cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 143 results. Next

A095091 Number of 4k+3 integers in range [2^n, 2^(n+1)] whose Jacobi-vector is not a valid Motzkin-path (A095101).

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 15, 31, 68, 148, 310, 664, 1345, 2768, 5673, 11605, 23665, 48035, 97599, 197383
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Cf. A095093.

Formula

a(n) = 2^(n-2) - A095090(n) for n > 1.

A095269 Diving index of 4n+3.

Original entry on oeis.org

0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 10, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 10, 0, 7, 0, 3, 0, 7, 7, 0, 0, 3, 0, 8, 0, 8, 0, 3, 0, 0, 0, 11, 0, 3, 0, 34, 0, 8, 19, 3, 0, 10, 13, 61, 0, 3, 0, 0, 7, 0, 0, 3, 0, 7, 0, 8, 0, 3, 0, 10, 0, 0, 0, 3, 0, 32, 0, 7, 0, 3, 0, 58, 0, 7, 0, 3, 0, 0
Offset: 0

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Comments

Diving index of an odd number n is the first integer u > 1 where Sum_{i=1..u} J(i/n) results -1 and zero if never. Here J(i/n) is Jacobi symbol of i and n, which reduces to a Legendre symbol L(i/n) when n is a prime.

Crossrefs

Cf. A004767, A095270, A095109, A095271 (same sequence with zeros removed).

Formula

a(n) = A095270(n)+1 modulo A004767(n).

A095274 a(n) = (A095100(n)-3)/4.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 25, 27, 29, 32, 33, 35, 37, 39, 41, 42, 43, 45, 47, 49, 53, 57, 59, 60, 62, 63, 65, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 85, 87, 89, 90, 92, 93, 95, 97, 98, 99, 101, 103, 104, 107, 109, 111, 113
Offset: 0

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Cf. A095100. Complement of A095275. Subset: A095272.

A095297 Number of A095287-primes in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 0, 2, 2, 8, 7, 22, 27, 68, 80, 235, 343, 844, 1180, 2849, 4473, 10138, 15387, 37023, 58714, 134477, 213397, 494625, 802311, 1829183, 2965114, 6789809, 11185644, 25412867, 42048314, 95440507, 159433693
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

Ratios a(n)/A036378(n) converge as: 0, 0.5, 0, 0.4, 0.285714, 0.615385, 0.304348, 0.511628, 0.36, 0.49635, 0.313725, 0.506466, 0.393349, 0.523573, 0.389439, 0.499037, 0.416132, 0.497205, 0.398266, 0.503126, 0.418382, 0.501376, 0.415405, 0.501741, 0.42358, 0.501731, 0.421943, 0.500653, 0.426814, 0.501264, 0.428266, 0.501433, 0.431691
Ratios a(n)/A095334(n) converge as: 1, 1, 1, 0.666667, 0.666667, 1.6, 1.75, 1.047619, 0.84375, 0.985507, 0.833333, 1.026201,1.023881, 1.098958, 1.057348, 0.996154, 1.023336, 0.98888, 0.993351,1.012581, 1.011595, 1.005518, 1.016781, 1.006987, 1.008436, 1.006948,1.004514, 1.002615, 1.003668, 1.00507, 1.006392, 1.005748, 1.004982

Crossrefs

a(n) = A036378(n)-A095296(n). Cf. A095298.

A095315 Primes in whose binary expansion the number of 1 bits is <= 2 + number of 0 bits.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 19, 37, 41, 43, 53, 67, 71, 73, 83, 89, 97, 101, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 193, 197, 199, 211, 227, 229, 233, 241, 257, 263, 269, 271, 277, 281, 283, 293, 307, 313, 331, 337, 353, 389, 397
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Examples

			13 is in the sequence because 13 = 1101_2. '1101' has three 1's and one 0. 3 = 2 + 1. - _Indranil Ghosh_, Feb 07 2017
		

Crossrefs

Complement of A095314 in A000040. Subset: A095287. Subset of A095319. Cf. also A095335.

Programs

  • Mathematica
    Select[Prime[Range[100]],DigitCount[#,2,1]<3+DigitCount[#,2,0]&] (* Harvey P. Dale, Aug 12 2016 *)
  • PARI
    B(x) = { nB = floor(log(x)/log(2)); b1 = 0; b0 = 0;
    for(i = 0, nB, if(bittest(x,i), b1++;, b0++;); );
    if(b1 <= (2+b0), return(1);, return(0););};
    forprime(x = 2, 397, if(B(x), print1(x, ", "); ); );
    \\ Washington Bomfim, Jan 12 2011
    
  • Python
    from sympy import isprime
    i=j=1
    while j<=250:
        if isprime(i) and bin(i)[2:].count("1")<=2+bin(i)[2:].count("0"):
            print(str(j)+" "+str(i))
            j+=1
        i+=1 # Indranil Ghosh, Feb 07 2017

A095741 Number of base-2 palindromic primes (A016041) in range [2^2n,2^(2n+1)].

Original entry on oeis.org

2, 2, 3, 3, 7, 12, 23, 40, 94, 142, 271, 480, 856, 1721, 3099, 5572, 10799, 20782, 39468, 72672, 139867, 274480, 520376, 986318, 1914097, 3726617, 7107443, 13682325, 26430797, 51412565, 99204128, 190457946, 372035117, 727434192, 1407026351, 2724590109, 5315491839
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Comments

Note that there are no such primes in any range ]2^(2n-1),2^2n], as all even-length binary palindromes are divisible by 3 (cf. A048702).
The ratio a(n)/A036378(2n) converges as follows: 1, 0.4, 0.230769, 0.069767, 0.051095, 0.025862, 0.014268, 0.007006, 0.00461, 0.00193, 0.00101, 0.000487, 0.000235, 0.000127, 0.000061, 0.000029

Crossrefs

Bisection of the first diagonal of triangle A095759.

Programs

  • Mathematica
    palindromicQ[n_, b_:10] := TrueQ[IntegerDigits[n, b] == Reverse[IntegerDigits[n, b]]]; Table[Length[Select[Range[2^(2n), 2^(2n + 1)], palindromicQ[#, 2] && PrimeQ[#] &]], {n, 10}] (* Alonso del Arte, Jan 13 2012 *)
  • PARI
    m=vector(65536);u=vector(#m);u[1]=1;for(b=1,#m-1,c=b;e=2^floor(log(b+.5)/log(2));d=0;u[b+1]=e;while(c>0,d=d+e*(c%2);c=floor(c/2);e=e/2);m[b+1]=d);for(x=0,31,h=0;y=2^x;for(w=y,2*y-1,if(x<16,v1=4*y*w+m[w+1];v2=v1+2*y,w1=floor(w/65536);w2=w-65536*w1;v1=262144*y*w1+4*y*w2+65536*u[w1+1]/u[w2+1]*m[w2+1]+m[w1+1];v2=v1+2*y);if(isprime(v1),h++);if(isprime(v2),h++));print(2*x+3" bits: "h)) \\ Martin Raab, Jan 13 2012

Formula

a(n) = A117773(2*n+1). - Chai Wah Wu, Jul 05 2019

Extensions

a(27)-a(32) from Martin Raab, Oct 20 2015
a(33)-a(35) from Chai Wah Wu, Jul 05 2019
a(36)-a(37) from Chai Wah Wu, Jul 11 2019

A095011 Number of 8k+5 primes (A007521) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 1, 1, 3, 2, 6, 11, 20, 35, 63, 118, 216, 407, 759, 1424, 2686, 5094, 9652, 18472, 35068, 67068, 128421, 246403, 473647, 911479, 1757076, 3390256, 6552075, 12675294, 24545280, 47583568, 92332958, 179313476, 348551899, 678031524, 1319932086, 2571422341
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Programs

Formula

a(n) = A095014(n) - A095010(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A095012 Number of 8k+7 primes (A007522) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 0, 2, 1, 4, 6, 12, 17, 36, 62, 118, 222, 395, 773, 1412, 2699, 5100, 9690, 18384, 35074, 67076, 128446, 246483, 473737, 911126, 1757021, 3390639, 6551367, 12675525, 24545392, 47584301, 92330675, 179318608, 348546687, 678022783, 1319953810, 2571408262
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Programs

Formula

a(n) = A095013(n) - A095009(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A095013 Number of 8k+-1 primes (A001132) in range [2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 0, 3, 2, 8, 10, 22, 35, 67, 126, 233, 438, 793, 1525, 2825, 5391, 10192, 19332, 36739, 70163, 133983, 256877, 492962, 946938, 1822776, 3513544, 6780795, 13102754, 25349101, 49090527, 95168113, 184659769, 358635803, 697092152, 1356042601, 2639892053, 5142809798
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A036378(n) - A095014(n) = A095009(n) + A095012(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A095014 Number of 8k+-3 primes (A003629) in range [2^n,2^(n+1)].

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 13, 21, 40, 70, 129, 231, 434, 819, 1505, 2884, 5358, 10198, 19303, 36847, 70173, 134233, 256831, 492856, 947182, 1822968, 3513746, 6781112, 13104524, 25348436, 49092129, 95167472, 184663536, 358631365, 697100084, 1356061232, 2639871771, 5142831980
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A036378(n) - A095013(n) = A095010(n) + A095011(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024
Previous Showing 31-40 of 143 results. Next