cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A213387 a(n) = 5*2^(n-1) - 2 - 3*n.

Original entry on oeis.org

0, 2, 9, 26, 63, 140, 297, 614, 1251, 2528, 5085, 10202, 20439, 40916, 81873, 163790, 327627, 655304, 1310661, 2621378, 5242815, 10485692, 20971449, 41942966, 83886003, 167772080, 335544237, 671088554, 1342177191
Offset: 1

Views

Author

J. M. Bergot, Jun 28 2012

Keywords

Comments

Create an array m(i,j) as follows: m(1,j) = j*(j-1)/2 in the top row, m(i,1) = (i-1)^2 in the left column, and m(i,j) = m(i,j-1) + m(i-1,j) recursively in the main body, j >= 1, i >= 1. The sum of the terms in an antidiagonal is one term in this sequence, a(n) = Sum_{k=1..n} m(n-k+1,k).

Examples

			For n=5, m(5,1)=16, m(4,2)=15, m(3,3)=11, m(2,4)=11, m(1,5)=10 gives the sum 63 = 2*A000295(4) + A095151(4) = 2*11 + 41.
		

Crossrefs

Programs

  • Mathematica
    Table[5*2^(n-1)-2-3n,{n,30}] (* or *) LinearRecurrence[{4,-5,2},{0,2,9},30] (* Harvey P. Dale, Sep 28 2012 *)

Formula

a(n) = A095151(n-1) + 2*A000295(n-1).
G.f.: x^2*(2+x) / ( (1-2*x)*(1-x)^2 ). - R. J. Mathar, Jun 29 2012
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3); a(1)=0, a(2)=2, a(3)=9. - Harvey P. Dale, Sep 28 2012

A103768 a(n) = (29*3^n - 18(n + 3)*2^n + 6n^2 + 24n + 27)/12.

Original entry on oeis.org

0, 0, 6, 46, 228, 930, 3406, 11682, 38412, 122806, 385182, 1192254, 3656452, 11141178, 33791934, 102161962, 308156748, 928008846, 2791497262, 8390220006, 25203689700, 75680274610, 227185526766, 681858569586, 2046204853708
Offset: 0

Views

Author

Henry Bottomley, Feb 15 2005

Keywords

Programs

  • Mathematica
    Table[(29*3^n-18(n+3)2^n+6n^2+24n+27)/12,{n,40}] (* or *) LinearRecurrence[ {10,-40,82,-91,52,-12},{0,0,6,46,228,930},40] (* Harvey P. Dale, Aug 31 2018 *)
  • PARI
    concat([0,0], Vec(-2*x^2*(x^3-4*x^2+7*x-3)/((x-1)^3*(2*x-1)^2*(3*x-1)) + O(x^100))) \\ Colin Barker, Sep 13 2014

Formula

a(n) = A078341(n, 3) = 3a(n-1)+n*A095151(n-1).
G.f.: -2*x^2*(x^3-4*x^2+7*x-3) / ((x-1)^3*(2*x-1)^2*(3*x-1)). - Colin Barker, Sep 13 2014

A288870 Triangle T from array A(k,n) = (2*k+1)*2^n + 1, k >=0, n >= 0 read by downwards antidiagonals.

Original entry on oeis.org

2, 3, 4, 5, 7, 6, 9, 13, 11, 8, 17, 25, 21, 15, 10, 33, 49, 41, 29, 19, 12, 65, 97, 81, 57, 37, 23, 14, 129, 193, 161, 113, 73, 45, 27, 16, 257, 385, 321, 225, 145, 89, 53, 31, 18, 513, 769, 641, 449, 289, 177, 105, 61, 35, 20, 1025, 1537, 1281, 897, 577, 353, 209, 121, 69, 39, 22
Offset: 0

Views

Author

Wolfdieter Lang, Jun 21 2017

Keywords

Comments

This entry was motivated by a class work of Ferran D.

Examples

			The array A begins:
k\n  0  1  2   3   4   5    6    7    8    9    10 ...
0:   2  3  5   9  17  33   65  129  257  513  1025
1:   4  7 13  25  49  97  193  385  769 1537  3073
2:   6 11 21  41  81 161  321  641 1281 2561  5121
3:   8 15 29  57 113 225  449  897 1793 3585  7169
4:  10 19 37  73 145 289  577 1153 2305 4609  9217
5:  12 23 45  89 177 353  705 1409 2817 5633 11265
6:  14 27 53 105 209 417  833 1665 3329 6657 13313
7:  16 31 61 121 241 481  961 1921 3841 7681 15361
8:  18 35 69 137 273 545 1089 2177 4353 8705 17409
9:  20 39 77 153 305 609 1217 2433 4865 9729 19457
...
The triangle T begins:
m\k    0    1    2   3   4   5   6   7  8  9 10 ...
0:     2
1:     3    4
2:     5    7    6
3:     9   13   11   8
4:    17   25   21  15  10
5:    33   49   41  29  19  12
6:    65   97   81  57  37  23  14
7:   129  193  161 113  73  45  27 16
8:   257  385  321 225 145  89  53 31 18
9:   513  769  641 449 289 177 105 61 35 20
10: 1025 1537 1281 897 577 353 209 121 69 39 22
...
		

Crossrefs

Cf. A288871. Columns of T (no 0's, or rows of A): A000051, A181565, A083575, A083686, A083705, A083683, A168596.
Row sums give A077802(n+1) or A095151(n+1).

Programs

  • Mathematica
    Table[(2 k + 1)*2^(m - k) + 1, {m, 0, 10}, {k, 0, m}] // Flatten (* Michael De Vlieger, Jun 25 2017 *)
  • PARI
    A(n, k) = (2*n + 1)*2^k + 1;
    for(n=0, 10, for(k=0, n, print1(A(k, n - k),", "))) \\ Indranil Ghosh, Jun 22 2017

Formula

Array A(k, n) = (2*k+1)*2^n + 1 for k >= 0 and n >= 0.
Triangle T(m, k) = A(k, m-k) = (2*k+1)*2^(m-k) + 1, k >= m >= 0, otherwise T(m, k) = 0.
O.g.f. for column k of T: x^k*(2*(k+1) - (2*k+3)*x)/((1-2*x)*(1-x)), k >= 0.
E.g.f. for column k of T (without leading 0's): (2*k+1)*exp(2*x) + exp(x), k>=0.
E.g.f. for column k of T: 2^(-k)*(2*k+1)*exp(2*x) + exp(x) - S(k,x), with S(k, x) = 2^(-k)* Sum_{m=1..k} A288871(k,m)*x^(m-1)/(m-1)! if k >=1 and S(0,x) = 0.

A368826 Square array T(n,k) = 3*2^k - n read by ascending antidiagonals.

Original entry on oeis.org

3, 2, 6, 1, 5, 12, 0, 4, 11, 24, -1, 3, 10, 23, 48, -2, 2, 9, 22, 47, 96, -3, 1, 8, 21, 46, 95, 192, -4, 0, 7, 20, 45, 94, 191, 384, -5, -1, 6, 19, 44, 93, 190, 383, 768, -6, -2, 5, 18, 43, 92, 189, 382, 767, 1536, -7, -3, 4, 17, 42, 91, 188, 381, 766, 1535, 3072
Offset: 0

Views

Author

Paul Curtz, Jan 07 2024

Keywords

Comments

Similar to A367559.

Examples

			Table begins:
   3  6 12 24 48 96 ...
   2  5 11 23 47 95 ...
   1  4 10 22 46 94 ...
   0  3  9 21 45 93 ...
  -1  2  8 20 44 92 ...
  -2  1  7 19 43 91 ...
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := 3*2^k - n; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jan 15 2024 *)

Formula

T(0,k) = 3*2^k = A007283(k).
T(1,k) = 3*2^k - 1 = A083329(k+1).
T(2,k) = 3*2^k - 2 = A033484(k).
T(3,k) = 3*2^k - 3 = 3*A000225(k).
T(4,k) = 3*2^k - 4 = -A165751(k).
T(5,k) = 3*2^k - 5 = A048488(k-1)
T(6,k) = 3*2^k - 6 = 3*A000918(k).

A120933 Triangle read by rows: T(n,k) is the number of binary words of length n for which the length of the maximal leading nondecreasing subword is k (1<=k<=n).

Original entry on oeis.org

2, 1, 3, 2, 2, 4, 4, 4, 3, 5, 8, 8, 6, 4, 6, 16, 16, 12, 8, 5, 7, 32, 32, 24, 16, 10, 6, 8, 64, 64, 48, 32, 20, 12, 7, 9, 128, 128, 96, 64, 40, 24, 14, 8, 10, 256, 256, 192, 128, 80, 48, 28, 16, 9, 11, 512, 512, 384, 256, 160, 96, 56, 32, 18, 10, 12, 1024, 1024, 768, 512, 320
Offset: 1

Views

Author

Emeric Deutsch, Jul 16 2006

Keywords

Examples

			T(4,2)=4 because we have 0100,0101,1100 and 1101.
Triangle starts:
2;
1,3;
2,2,4;
4,4,3,5;
8,8,6,4,6;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k
    				

Formula

T(n,k) = k*2^(n-k-1) if k
G.f.: G(t,z) = (1-2z+tz^2)/[(1-2z)(1-tz)^2] - 1.
Row sums are the powers of 2 (A000079).
Sum_{k=1..n} k*T(n,k) = 3*2^n-n-3 = A095151(n).
Previous Showing 11-15 of 15 results.