cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A001342 E.g.f.: 24*exp(x)/(1-x)^5.

Original entry on oeis.org

24, 144, 984, 7584, 65304, 622704, 6523224, 74542464, 923389464, 12331112784, 176656186584, 2703187857504, 44010975525144, 759759305162544, 13863284116261464, 266629052052953664, 5391260831368104984, 114341673457251051024, 2538207055383516388824
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Same as 24*A095177.

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[24*Exp[x]/(1 - x)^5, {x, 0, nn}], x] (* T. D. Noe, Jun 28 2012 *)
  • PARI
    a(n) = n!*polcoeff(24*exp(x+x*O(x^n))/(1-x)^5, n) \\ Christian Krause, Dec 21 2022

Formula

a(n) = floor( n! * (n^4+6*n^3+17*n^2+20*n+9) * exp(1) ). [Mark van Hoeij, Nov 11 2009]
a(n) = Sum_{k=0..n} binomial(n, k)*(k+4)!. - Christian Krause, Dec 21 2022

Extensions

Error in description corrected Jan 30 2008
More terms from N. J. A. Sloane, Jan 30 2008

A095740 E.g.f.: exp(x)/(1-x)^9.

Original entry on oeis.org

1, 10, 109, 1288, 16417, 224686, 3288205, 51263164, 848456353, 14862109042, 274743964621, 5346258202000, 109249238631169, 2339328151461718, 52384307381414317, 1224472783033479556, 29826054965115774145
Offset: 0

Views

Author

Philippe Deléham Jul 09 2004

Keywords

Comments

Sum_{k = 0..n} A094816(n,k)*x^k gives A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n), A096341(n), A095722(n) for x = 1, 2, 3, 4, 5, 6, 7, 8.

Programs

  • Maple
    seq(simplify(hypergeom([9,-n],[],-1)),n=0..30); # Robert Israel, May 27 2016
  • Mathematica
    Table[HypergeometricPFQ[{9, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)

Formula

a(n) = Sum_{k = 0..n} A094816(n, k)*9^k.
a(n) = Sum_{k = 0..n} binomial(n, k)*(k+8)!/8!.
a(n) = 2F0(9,-n;;-1). - Benedict W. J. Irwin, May 27 2016
a(n) = ((n^8 + 28*n^7 + 350*n^6 + 2492*n^5 + 10899*n^4 + 29596*n^3 + 48082*n^2 + 42048*n + 14833) * Gamma(n+1,1)*e + n^7 + 28*n^6 + 349*n^5 + 2465*n^4 + 10579*n^3 + 27501*n^2 + 40132*n + 25487) / 40320. - Robert Israel, May 27 2016
Previous Showing 11-12 of 12 results.