cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A290977 First n-digit number to appear twice in a row in the decimal expansion of Pi.

Original entry on oeis.org

3, 59, 209, 9314, 64015, 886287, 7348278, 85105027
Offset: 1

Views

Author

Bobby Jacobs, Aug 16 2017

Keywords

Comments

209209 and 305305 appear in Pi before any 2-digit number appears twice in a row.
a(n) (n >= 1) begins at the following decimal places: 24, 413, 326, 8239, 107472, 1632152, 9719518. - Robert G. Wilson v, Aug 23 2017

Examples

			a(1) = 3 because 3 is the first 1-digit number to appear twice in a row in the decimal expansion of Pi = 3.14159265358979323846264(33)...
		

Crossrefs

Programs

  • Mathematica
    With[{s = Rest@ First@ RealDigits[N[Pi, 10^4]]}, Keys@ Merge[#, Identity] &@ Table[If[Length@ # > 0, TakeSmallest[#, 1], 0 -> 0] &@ Sort[Map[#[[1, 1]] &, DeleteCases[#, {}]]] &@ Map[SequenceCases[#, {a_, b_} /; b == a + n] &, KeyMap[FromDigits, PositionIndex@ Partition[s, n, 1]]], {n, 4}]] (* Michael De Vlieger, Aug 16 2017 *)
    pi = StringDrop[ ToString[ N[Pi, 1632200]], 2]; f[n_] := Block[{k = 1}, While[ StringTake[pi, {k, k +n -1}] != StringTake[pi, {k +n, k +2n -1}], k++]; k]; Array[f, 6] (* Robert G. Wilson v, Aug 17 2017 *)
  • PARI
    eva(n) = subst(Pol(n), x, 10)
    pistring(n) = default(realprecision, n+10); my(x=Pi); floor(x*10^n)
    pidigit(n) = pistring(n)-10*pistring(n-1)
    consecpidigits(pos, len) = my(v=vector(len)); for(k=1, len, v[k]=pidigit(pos+k)); v
    a(n) = my(v=[], w=[], x=1); while(1, v=consecpidigits(x, n); w=consecpidigits(x+n, n); if(v==w, return(eva(v))); x++) \\ Felix Fröhlich, Aug 16 2017
    
  • Python
    from sympy import S
    # download https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt, then
    # with open('pi-billion.txt', 'r') as f: pi_digits = f.readline()
    pi_digits = str(S.Pi.n(3*10**5+2))[:-2] # alternative to above
    pi_digits = pi_digits.replace(".", "")
    def a(n):
        for k in range(1, len(pi_digits)-n):
            s = pi_digits[k:k+2*n]
            if s[0] != 0 and s[:len(s)//2] == s[len(s)//2:]:
                return int(s[:len(s)//2])
    print([a(n) for n in range(1, 6)]) # Michael S. Branicky, Jan 10 2022

Extensions

a(6) from Robert G. Wilson v, Aug 19 2017
a(7) from Bobby Jacobs, Aug 22 2017
a(8) from Michael S. Branicky, Jan 10 2022

A329368 Partition the decimal expansion of Pi into non-overlapping strings of length 10: 3141592653, 5897932384,..; a(n) is the position of the strings where digits are different from each other.

Original entry on oeis.org

7, 548, 3113, 11665, 11728, 14305, 15762, 19177, 23288, 28259, 35603, 37613, 40595, 40740, 41477, 52108, 54085, 54367, 62272, 74856, 75082, 75178, 82919, 83591, 92284, 94936, 103849, 105419, 105832, 108875, 111962, 115152, 117919, 118976, 121112, 124121, 128505
Offset: 1

Views

Author

XU Pingya, Apr 27 2020

Keywords

Examples

			a(1) = 7, because such a string first occur at the 7th string: 4592307816 (i.e., 61-70 digits of Pi).
		

References

  • David Blatner, The Joy of Pi, Walker and Co., NY, 1997; page 91.

Crossrefs

Programs

  • Mathematica
    q[i_]:=q[i]=Take[RealDigits[Pi,10,10i][[1]],-10];
    a={}; Do[If[Length@Union@q[i]==10, AppendTo[a,i]], {i,130000}]
    a
Previous Showing 21-22 of 22 results.