cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A096898 Least area/6 of primitive Pythagorean triangles with even leg 4n.

Original entry on oeis.org

1, 10, 5, 84, 35, 14, 105, 680, 231, 30, 429, 220, 715, 154, 55, 5456, 1615, 390, 2261, 260, 91, 770, 4025, 1976, 5175, 1326, 6525, 140, 8091, 1190, 9889, 43680, 935, 3094, 595, 204, 16835, 4370, 1729, 3080, 22919, 1330, 26445, 836, 285, 7866, 34545, 16240
Offset: 1

Views

Author

Ray Chandler, Jul 14 2004

Keywords

Crossrefs

A096899 Least inradius of primitive Pythagorean triangles with even leg 4n.

Original entry on oeis.org

1, 3, 2, 7, 6, 3, 10, 15, 14, 4, 18, 15, 22, 12, 5, 31, 30, 20, 34, 15, 6, 28, 42, 39, 46, 36, 50, 7, 54, 35, 58, 63, 30, 52, 21, 8, 70, 60, 42, 55, 78, 35, 82, 24, 9, 76, 90, 87, 94, 84, 66, 40, 102, 92, 10, 63, 78, 100, 114, 56, 118, 108, 45, 127, 30, 11, 130, 72, 102, 91
Offset: 1

Views

Author

Ray Chandler, Jul 14 2004

Keywords

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

A155186 Primes in A155171.

Original entry on oeis.org

2, 7, 29, 101, 107, 197, 227, 457, 647, 829, 1549, 1627, 2221, 2309, 2347, 2521, 2677, 2801, 3181, 3299, 3529, 3541, 3557, 3739, 3769, 4231, 4549, 4871, 4987, 5651, 5827, 5881, 6037, 6079, 6637, 6827, 7517, 7639, 7937, 9787, 11621, 12041, 12329, 13009
Offset: 1

Views

Author

Keywords

Comments

Numbers p (prime numbers only) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[p],AppendTo[lst,p]]],{n,8!}];lst

A155187 Prime numbers q of primitive Pythagorean triangles such that perimeters are averages of twin prime pairs, p+1=q(prime), a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes.

Original entry on oeis.org

2, 3, 11, 71, 227, 491, 683, 1103, 1187, 2591, 3923, 4271, 4931, 6737, 7193, 7703, 8093, 8753, 8963, 9173, 9377, 10271, 13043, 13451, 13997, 15233, 15443, 15803, 15887, 17957, 18701, 19961, 20681, 21701, 22031, 22073, 24371, 24473, 24683
Offset: 1

Views

Author

Keywords

Comments

p=1, q=2(prime), a=3, b=4, c=5, s=12-+1 primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[q],AppendTo[lst,q]]],{n,8!}];lst
Previous Showing 11-14 of 14 results.