cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A097267 Least positive integer that is the diagonal of n primitive Pythagorean quadruples, or zero if no such integer exists.

Original entry on oeis.org

1, 3, 9, 19, 21, 27, 39, 33, 59, 51, 75, 57, 63, 103, 81, 0, 93, 121, 111, 99, 133, 123, 181, 129, 141, 153, 159, 211, 147, 227, 183, 171, 217, 263, 271, 201, 189, 219, 0, 307, 237, 243, 261, 249, 301, 267, 367, 485, 231, 291, 303, 409, 309, 419, 327, 297
Offset: 0

Views

Author

Ray Chandler, Aug 19 2004

Keywords

Comments

First appearance of n in A097266.
Conjecture: a(15)=a(38)=0.

Crossrefs

A360946 Number of Pythagorean quadruples with inradius n.

Original entry on oeis.org

1, 3, 6, 10, 9, 19, 16, 25, 29, 27, 27, 56, 31, 51, 49, 61, 42, 91, 52, 71, 89, 86, 63, 142, 64, 95, 116, 132, 83, 153, 90, 144, 149, 133, 108, 238, 108, 162, 169, 171, 122, 284, 130, 219, 200, 196, 145, 340, 174, 201, 231, 239, 164, 364, 176, 314, 278, 256, 190, 399, 195, 281, 360, 330
Offset: 1

Views

Author

Keywords

Comments

A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer.
For every positive integer n, there is at least one Pythagorean quadruple with inradius n.

Examples

			For n=1 the a(1)=1 solution is (1,2,2,3).
For n=2 the a(2)=3 solutions are (1,4,8,9), (2,3,6,7) and (2,4,4,6).
For n=3 the a(3)=6 solutions are (1,6,18,19), (2,5,14,15), (2,6,9,11), (3,4,12,13), (3,6,6,9) and (4,4,7,9).
		

References

  • J. M. Blanco Casado, J. M. Sánchez Muñoz, and M. A. Pérez García-Ortega, El Libro de las Ternas Pitagóricas, Preprint 2023.

Crossrefs

Programs

  • Mathematica
    n=50;
    div={};suc={};A={};
    Do[A=Join[A,{Range[1,(1+1/Sqrt[3])q]}],{q,1,n}];
    Do[suc=Join[suc,{Length[div]}];div={};For [i=1,i<=Length[Extract[A,q]],i++,div=Join[div,Intersection[Divisors[q^2+(Extract[Extract[A,q],i]-q)^2],Range[2(Extract[Extract[A,q],i]-q),Sqrt[q^2+(Extract[Extract[A,q],i]-q)^2]]]]],{q,1,n}];suc=Rest[Join[suc,{Length[div]}]];matriz={{"q"," ","cuaternas"}};For[j=1,j<=n,j++,matriz=Join[matriz,{{j," ",Extract[suc,j]}}]];MatrixForm[Transpose[matriz]]

A375098 Diagonals of a Euclidian solid such that there exists a Pythagorean quadruple d^2=a^2+b^2+c^2 that is more cube-like than any prior value of d.

Original entry on oeis.org

3, 9, 11, 41, 123, 153, 571, 1713, 2131, 7953, 23859, 29681, 110771, 332313, 413403, 1542841, 4628523, 5757961, 21489003, 64467009, 80198051, 299303201, 897909603, 1117014753, 4168755811, 12506267433, 15558008491, 58063278153, 174189834459, 216695104121
Offset: 1

Views

Author

Christian N. K. Anderson, Mark K. Transtrum, and David D. Allred, Jul 29 2024

Keywords

Comments

To determine how "cube-like" a Pythagorean quad is, we use the quotient C/(C-a*b*c) where C is the volume of an ideal cube for a given diagonal d, C=(d/sqrt(3))^3. A ratio of 100 indicates that the best {a,b,c} combination creates a solid 1 part per 100 smaller than the ideal cube volume.
Contains all the terms in A001835 and A079935 except the leading 1s. For such a term b(m) contained in a(n) from those sequences, 2*b(m) will tie the current record, while 3*b(m) will tie but will also break the current record exactly half the time and thus appear as a(n+1). This means round((2+sqrt(3))*b(m)) will also be in the sequence as either a(n+1) or a(n+2) if a better quad for 3*b(n) was found.
The constant (2+sqrt(3)) follows from the recurrence relationship b(n)=4*b(n-1)-b(n-2). The constant can be represented as the continued fraction 3,1,2,1,2,1,2,1,2,.... The equivalents for the 2D case (A001653) are 3+2*sqrt(2) and {5,1,4,1,4,1,4,1,4,...}.
We conjecture this method provides complete solutions. This was confirmed directly by brute-force testing up to 1e7 (optimized using the sum-of-two-squares theorem for a given d^2-a^2 = b^2 + c^2; see link below).

Examples

			3 is in the sequence because 3^2=1^2+2^2+2^2 is the smallest Pythagorean quad, with an error of one part in 4.344.
6 is NOT in the sequence because {6,2,4,4} is the most cube-like Pythagorean quad, but only ties the previous record without breaking it.
7 is NOT in the sequence because the most cube-like quad {7,2,3,6} has an error of one part in 2.2, worse than that for d=3.
9 is in the sequence NOT because of {9,3,6,6} which ties the previous record, but because {9,4,4,7} improves on the previous record with an error of one part in 4.958.
		

Crossrefs

Cf. A096907, A096908, A096909, A096910 for lists of a, b, c, and d of the 10,000 first Pythgorean quads, sorted by ascending d.
Contains all terms in A001835 and A079935 except the leading 1s.
Cf. A001653: The 2D equivalent of this sequence (i.e., right triangle whose legs are closest to equal)

Programs

  • Mathematica
    (* An efficient program is provided in the links section. *)

Formula

For n == 0 (mod 3), a(n) = 4*a(n-2)-a(n-3) OR a(n) = floor(a(n-1)*(2+sqrt(3))/3),
For n == 1 (mod 3), a(n) = 4*a(n-2)-a(n-1) OR a(n) = floor(a(n-1)*(2+sqrt(3))),
For n == 2 (mod 3), a(n) = 3*a(n-1).

A377739 Array of positive integer triples (x,y,z) where the sum of their cubes equals another cubic number.

Original entry on oeis.org

3, 4, 5, 1, 6, 8, 6, 8, 10, 2, 12, 16, 9, 12, 15, 3, 10, 18, 7, 14, 17, 12, 16, 20, 4, 17, 22, 3, 18, 24, 18, 19, 21, 11, 15, 27, 15, 20, 25, 4, 24, 32, 18, 24, 30, 6, 20, 36, 14, 28, 34, 2, 17, 40, 6, 32, 33, 21, 28, 35, 16, 23, 41, 5, 30, 40, 3, 36, 37, 27, 30, 37, 24, 32, 40, 8, 34, 44, 29, 34, 44, 6, 36, 48, 12, 19, 53, 27, 36, 45, 36, 38, 42
Offset: 1

Views

Author

Luke Voyles, Nov 05 2024

Keywords

Comments

The Shiraishi theorem demonstrated that there were an infinite number of cubic number triples whose sum equaled a cubic number (A226903). Through an analysis of the cubic number triples found by Russell and Gwyther, another way to prove that there are an infinite number of cubic number triples who sum equals a cubic number appeared. For any triple, one can add a zero to the end of the three numbers. The new three numbers will also equal a cubic number. For example, 3^3+4^3+5^3=6^3 can be transformed into 30^3+40^3+50^3=60^3. The number of zeros that are consistently applied to each of the numbers who cubic numbers will always create new cubic numbers. For example, 30^3+40^3+50^3=60^3 can become 300^3+400^3+500^3=600^3 and 3000^3+4000^3+5000^3=6000^3, and so on. Through experiments, the formula holds true for Pythagorean triples and Pythagorean quadruples as well. To apply the method to Pythagorean triples, 3^2+4^2=5^2 can be transformed into 30^2+40^2=50^2, 300^2+400^2=500^2, and so on. For Pythagorean quadruples, 3^2+4^2+12^2=13^2 can be transformed into 30^2+40^2+120^2=130^2 and then to 300^2+400^2+1200^2=1300^2. The property holds even beyond the second and third powers. For example, 3530^4=300^4+1200^4+2720^4+3150^4 just as 353^4=30^4+120^4+272^4+315^4. Additionally, 1440^5=270^5+840^5+1100^5+1330^5 just as 144^5=27^5+84^5+110^5+133^5. Once one set is found, it appears there can be an infinite number of similar sets for any power through this method.
The list of Russell and Gwyther also reveals that the cube of 38 can be represented as the sum of the cubes of nine unique positive integers. This is because 38^3=3^3+4^3+5^3+7^3+14^3+17^3+18^3+24^3+30^3.

Examples

			3^3+4^3+5^3=6^3
1^3+6^3+8^3=9^3
6^3+8^3+10^3=12^3
2^3+12^3+16^3=18^3
9^3+12^3+15^3=18^3
		

Crossrefs

The sum of each cubic number triple produce the sequence A023042. The comments produce another method to produce an infinite number of cubic number triples whose sum equals a cube that the method shown by Shiraishi according to A226903. The comments discuss qualities of Pythagorean triples A103606 and Pythagorean quadruples A096907. The title's structure drew inspiration from A291694.

Formula

If a^3+b^3+c^3=d^3, then any specific number k that has a zero as the last digit will make k(d^3) another cubic number through the formula k(a^3)+k(b^3)+k(c^3)=k(d^3)
Previous Showing 11-14 of 14 results.