cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A140505 Second differences of Jacobsthal sequence A001045, pairs with even and odd indices swapped.

Original entry on oeis.org

2, -1, 4, 0, 12, 4, 44, 20, 172, 84, 684, 340, 2732, 1364, 10924, 5460, 43692, 21844, 174764, 87380, 699052, 349524, 2796204, 1398100, 11184812, 5592404, 44739244, 22369620, 178956972, 89478484, 715827884, 357913940, 2863311532, 1431655764, 11453246124
Offset: 0

Views

Author

Paul Curtz, Jun 30 2008

Keywords

Comments

The second differences are -1, 2, 0, 4, 4, 12, 20, 44, ... (-1)^(n+1)*A084247(n), essentially A097073, which are listed here with -1 <=> 2, 0 <=> 4 etc. swapped in pairs.

Formula

a(n) = 4*A092808(n-2), n>1.
a(n+1) - 2a(n) = (-1)^n*A140504(n).
O.g.f.: (2+x-5x^2)/[(1+x)(1-2x)(1+2x)]. - R. J. Mathar, Jul 08 2008

Extensions

Edited by R. J. Mathar, Jul 08 2008

A166977 Jacobsthal-Lucas numbers A014551, except a(0) = 0.

Original entry on oeis.org

0, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911, 1073741825, 2147483647
Offset: 0

Views

Author

Paul Curtz, Oct 26 2009

Keywords

Comments

The sequence (-1)^n*a(n) is the inverse binomial transform of A166956.
The main diagonal of the table of a(n) and its higher differences in successive rows is 0,4,8,16,32,.. , 4*A131577(n).

Programs

  • Mathematica
    Join[{0, 1}, LinearRecurrence[{1, 2}, {5, 7}, 50]] (* or *) Table[2^n + (-1)^n, {n,1,25}] (* G. C. Greubel, May 30 2016 *)

Formula

a(n) = A014551(n), n>0.
a(n) - A001045(n) = A097073(n), n>0.
a(n) - A001045(n) = 4*A001045(n-1).
a(n) = a(n-1) + 2*a(n-2), n>2.
G.f.: x*(1 + 4*x)/((1+x) * (1-2*x)).
a(n) = (-1)^n + 2^n for n>0. - Colin Barker, Jun 06 2012
E.g.f.: exp(2*x) + exp(-x) - 2. - G. C. Greubel, May 30 2016

Extensions

Edited and extended by R. J. Mathar, Mar 14 2010

A321373 Array T(n,k) read by antidiagonals where the first row is (-1)^k*A140966(k) and each subsequent row is obtained by adding A001045(k) to the preceding one.

Original entry on oeis.org

2, 2, -1, 2, 0, 3, 2, 1, 4, 1, 2, 2, 5, 4, 7, 2, 3, 6, 7, 12, 9, 2, 4, 7, 10, 17, 20, 23, 2, 5, 8, 13, 22, 31, 44, 41, 2, 6, 9, 16, 27, 42, 65, 84, 87, 2, 7, 10, 19, 32, 53, 86, 127, 172, 169, 2, 8, 11, 22, 37, 64, 107, 170, 257, 340, 343
Offset: 0

Views

Author

Paul Curtz, Nov 08 2018

Keywords

Comments

Array:
2, -1, 3, 1, 7, 9, 23, 41, 87, ... = (-1)^n*A140966(n)
2, 0, 4, 4, 12, 20, 44, 84, 172, ... = abs(A084247(n+1))
2, 1, 5, 7, 17, 31, 65, 127, 257, ... = A014551(n)
2, 2, 6, 10, 22, 42, 86, 170, 342, ... = A078008(n+2) = A014113(n+1)
2, 3, 7, 13, 27, 53, 107, 213, 427, ... = A048573(n)
2, 4, 8, 16, 32, 64, 128, 256, 512, ... = A000079(n+1)
2, 5, 9, 19, 37, 75, 149, 299, 597, ... = A062092(n)
2, 6, 10, 22, 42, 86, 170, 342, 682, ... = A078008(n+3) = A014113(n+2).
T(n+1,k) = (-1)^k*A140966(k) + (n+1)*A001045(k).
Every row T(n+1,k) has the signature (1,2).
T(0,k) = 2, -2, 2, -2, ... = (-1)^n*2.
T(n+1,k) - T(0,k) = (n+1)*A001045(n).
5*A001045(n) is not in the OEIS.

Examples

			Triangle a(n):
  2;
  2, -1;
  2,  0,  3;
  2,  1,  4,  1;
  2,  2,  5,  4,  7;
  2,  3,  6,  7, 12,  9;
  2,  4,  7, 10, 17, 20, 23;
  etc.
Row sums: 2, 1, 5, 8, 20, 39, 83, 166, 338, 677, 1361, 2724, ... = b(n+2).
With b(0) = 2 and b(1) = 0, b(n) = b(n-1) + 2*b(n-2)  + n - 4, n > 1.
b(n) = A001045(n) - A097065(n-1).
b(n) = b(n-2) + A000225(n-2).
		

Crossrefs

Programs

  • Mathematica
    T[_, 0] = 2;
    T[0, k_] := (2^k + 5(-1)^k)/3;
    T[n_ /; n>0, k_ /; k>0] := T[n, k] = T[n-1, k] + (2^k + (-1)^(k+1))/3;
    T[, ] = 0;
    Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)

A322783 a(n) = 1 - n + (2^(n+2) - (-1)^n)/3.

Original entry on oeis.org

2, 3, 4, 9, 18, 39, 80, 165, 334, 675, 1356, 2721, 5450, 10911, 21832, 43677, 87366, 174747, 349508, 699033, 1398082, 2796183, 5592384, 11184789, 22369598, 44739219, 89478460, 178956945, 357913914, 715827855, 1431655736
Offset: 0

Views

Author

Paul Curtz, Dec 26 2018

Keywords

Comments

a(n) mod 10 = period 20: repeat [2, 3, 4, 9, 8, 9, 0, 5, 4, 5, 6, 1, 0, 1, 2, 7, 6, 7, 8, 3] = disordered [0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9].

Crossrefs

Programs

  • PARI
    Vec((2 - 3*x - 3*x^2 + 6*x^3) / ((1 - x)^2*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 26 2018

Formula

a(n+1) - 2*(n) = -1, -2, 1, 0, 3, 2, 5, 4, ..., n >= 0.
a(n+1) - a(n) = A097074(n).
a(n+2) - 2*a(n+1) + a(n) = A097073(n+1).
From Colin Barker, Dec 26 2018: (Start)
G.f.: (2 - 3*x - 3*x^2 + 6*x^3) / ((1 - x)^2*(1 + x)*(1 - 2*x)).
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4) for n > 3.
(End)
Previous Showing 21-24 of 24 results.