cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A368870 Number of partitions of n into nonprime parts not greater than sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 37, 37, 40, 40, 44, 44, 48, 48, 52, 52, 56, 56, 61, 61, 65, 65, 70, 70, 75, 75, 80, 80, 85, 85, 91, 91, 96, 96, 351, 351, 378, 378, 411, 411, 441
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 08 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(isprime(i), 0, b(n-i, min(n-i, i)))))
        end:
    a:= n-> b(n, floor(sqrt(n))):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 13 2024
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - Boole[!PrimeQ[k]] x^k), {k, 1, Floor[Sqrt[n]]}], {x, 0, n}], {n, 0, 70}]

A369217 Number of partitions of n into squarefree parts not greater than sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 4, 4, 5, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 156, 172, 189, 207, 226, 247, 268, 291, 315, 340, 367, 892, 973, 1064, 1159, 1260, 1368, 1485, 1604, 1735, 1872, 2016, 2169, 2333, 5431, 5897, 6394, 6923, 7486, 8088, 8724
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - Boole[SquareFreeQ[k]] x^k), {k, 1, Floor[Sqrt[n]]}], {x, 0, n}], {n, 0, 55}]

A369339 Number of partitions of n into triangular numbers not greater than sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 49, 49, 49, 56, 56, 56, 64, 64, 64, 72, 72, 72, 81, 81, 81, 90, 90, 90, 100, 100, 100, 110, 110, 110, 121, 121, 121, 132, 132, 132, 144, 144, 144, 156, 156
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^(k (k + 1)/2)), {k, 1, Floor[(Sqrt[1 + 8 Sqrt[n]] - 1)/2]}], {x, 0, n}], {n, 0, 70}]

A369340 Number of partitions of n into squares not greater than sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 108, 110, 112, 115, 118
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^(k^2)), {k, 1, Floor[n^(1/4)]}], {x, 0, n}], {n, 0, 85}]
Previous Showing 11-14 of 14 results.