cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A133657 Expansion of q * (phi(q) * psi(q^4))^2 in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 4, 0, 6, 16, 8, 0, 13, 24, 12, 0, 14, 32, 24, 0, 18, 52, 20, 0, 32, 48, 24, 0, 31, 56, 40, 0, 30, 96, 32, 0, 48, 72, 48, 0, 38, 80, 56, 0, 42, 128, 44, 0, 78, 96, 48, 0, 57, 124, 72, 0, 54, 160, 72, 0, 80, 120, 60, 0, 62, 128, 104, 0, 84, 192, 68, 0, 96
Offset: 1

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 4*q^2 + 4*q^3 + 6*q^5 + 16*q^6 + 8*q^7 + 13*q^9 + 24*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q^2]/2)^2, {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
    a[n_] := Switch[IntegerExponent[n, 2], 0, DivisorSigma[1, n], 1, 4*DivisorSigma[1, n/2], , 0]; Array[a, 100] (* _Amiram Eldar, Nov 12 2022 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%2, sigma(n), if( n%4, 4 * sigma(n/2), 0)))};
    
  • PARI
    {a(n) = my(A); if ( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^3) )^2, n))};

Formula

Expansion of (eta(q^2)^5 * eta(q^8)^2 / (eta(q)^2 * eta(q^4)^3))^2 in powers of q.
Euler transform of period 8 sequence [ 4, -6, 4, 0, 4, -6, 4, -4, ...].
a(n) is multiplicative with a(2) = 4, a(2^e) = 0 if e>1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133690.
a(4*n) = 0. a(4*n+2) = 4 * sigma(2*n+1). a(2*n+1) = sigma(2*n+1).
a(n) = -(-1)^n * A121455(n). Convolution square of A113411.
a(2*n + 1) = A008438. a(4*n + 1) = A112610(n). a(4*n + 3) = 4 * A097723(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/16 = 0.6168502... (A222068). - Amiram Eldar, Nov 12 2022

A133691 Expansion of (1 - (phi(-q) * phi(q^2))^2) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 4, -6, 6, -8, 8, -6, 13, -12, 12, -24, 14, -16, 24, -6, 18, -26, 20, -36, 32, -24, 24, -24, 31, -28, 40, -48, 30, -48, 32, -6, 48, -36, 48, -78, 38, -40, 56, -36, 42, -64, 44, -72, 78, -48, 48, -24, 57, -62, 72, -84, 54, -80, 72, -48, 80, -60, 60, -144
Offset: 1

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 2*q^2 + 4*q^3 - 6*q^4 + 6*q^5 - 8*q^6 + 8*q^7 - 6*q^8 + 13*q^9 - ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Which[ n < 1, 0, OddQ[n], DivisorSigma[ 1, n], True, -2 DivisorSum[ n/2, # Boole[Mod[#, 4] > 0] &]]; (* Michael Somos, Oct 30 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - (EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^2])^2) / 4, {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n<1, 0, n%2, sigma(n), -2 * sumdiv(n/2, d, if(d%4, d)))};

Formula

Expansion of (1 - (eta(q)^2 * eta(q^4)^5 / (eta(q^2)^3 * eta(q^8)^2))^2) / 4 in powers of q.
a(n) is multiplicative with a(2) = -2, a(2^e) = -6 if e>1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
a(n) = -4 * A133690(n) = -(-1)^n * A111973(n). a(2*n) = -2 * A046897(n). a(2*n + 1) = A008438(n). a(4*n) = -6 * A000593(n). a(4*n + 1) = A112610(n). a(4*n + 3) = 4 * A097723(n).
Dirichlet g.f.: zeta(s) * zeta(s-1) * (1 - 5/2^s + 1/2^(2*s-1) + 1/2^(3*s-3)). - Amiram Eldar, Oct 28 2023

A208451 Expansion of phi(q) * phi(-q)^3 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 0, 16, -8, -24, 0, 32, 24, -52, 0, 48, -32, -56, 0, 96, 24, -72, 0, 80, -48, -128, 0, 96, 96, -124, 0, 160, -64, -120, 0, 128, 24, -192, 0, 192, -104, -152, 0, 224, 144, -168, 0, 176, -96, -312, 0, 192, 96, -228, 0, 288, -112, -216, 0, 288, 192, -320
Offset: 0

Views

Author

Michael Somos, Feb 26 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 4*q + 16*q^3 - 8*q^4 - 24*q^5 + 32*q^7 + 24*q^8 - 52*q^9 + 48*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(16), 2), 58); A[1] - 4*A[2] + 16*A[4] - 8*A[5]; /* Michael Somos, Aug 21 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^2 QPochhammer[ q^2] / QPochhammer[ q^4])^2, {q, 0, n}]; (* Michael Somos, Aug 21 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, if( n%4 == 2, 0, -4 * if( n%2, (-1)^(n\2) * sigma(n), -2 * (-1)^(n\4) * sumdiv( n\4, d, if( d%4, d)))))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^2 + A) / eta(x^4 + A))^2, n))};
    

Formula

Expansion of phi(-q^4)^4 - 4 * q * psi(-q^2)^4 = phi(q) * phi(-q)^3 = phi(-q)^2 * phi(-q^2)^2 = phi(-q^2)^6 / phi(q)^2 = psi(-q)^4 * chi(-q^2)^6 = f(-q)^4 * chi(-q^2)^2 = f(-q)^6 / psi(-q)^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (eta(q)^2 * eta(x^2) / eta(x^4))^2 in powers of q.
Euler transform of period 4 sequence [ -4, -6, -4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 5128 (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A097723.
a(4*n + 2) = 0. a(2*n + 1) = -4 * A121613(n). a(4*n) = A096727(n). a(4*n + 1) = -4 * A112610(n). a(4*n + 3) = 16 * A097723(n). a(8*n) = A004011(n). a(8*n + 4) = -8 * A008438(n).

A295012 a(n) = sigma(12n - 1)/12, where sigma = sum of divisors (A000203).

Original entry on oeis.org

1, 2, 4, 4, 5, 6, 7, 10, 9, 12, 11, 14, 16, 14, 15, 16, 20, 22, 19, 20, 21, 22, 31, 28, 28, 26, 30, 34, 29, 30, 36, 32, 40, 38, 35, 36, 37, 56, 39, 40, 41, 42, 52, 48, 57, 50, 47, 62, 49, 50, 56, 60, 64, 54, 55, 62, 57, 70, 68, 60, 66, 62, 76, 70, 70, 76
Offset: 1

Views

Author

M. F. Hasler, Dec 08 2017

Keywords

Comments

Robert G. Wilson v observes in A280098 that {1, 3, 4, 6, 8, 12, 24} seem to be the only positive integers k such that sigma(kn-1)/k is an integer for all n > 0.

Crossrefs

Cf. A280098 (analog for k = 24), A097723 (analog for k = 4), A033686 (analog for k = 3), A000203 (sigma, also the analog for k = 1).
The analog for k = 8 is A258835, up to the offset.
The analog for k = 6 is A098098 (up to the offset), a signed variant of this and the preceding one is A258831.
Cf. A086463.

Programs

  • GAP
    sequence := List([1..10^5], n-> Sigma(12 *n-1)/12); # Muniru A Asiru, Dec 28 2017
  • Maple
    with(numtheory):
    seq(sigma(12*n-1)/12, n=1..10^3); # Muniru A Asiru, Dec 28 2017
  • Mathematica
    Array[DivisorSigma[1, 12 # - 1]/12 &, 66] (* Michael De Vlieger, Dec 08 2017 *)
  • PARI
    vector(90,n,sigma(12*n-1)/12)
    

Formula

Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Mar 28 2024
Previous Showing 11-14 of 14 results.