A259131 Numbers n such that 13*n^2 + 52 is a square.
3, 36, 393, 4287, 46764, 510117, 5564523, 60699636, 662131473, 7222746567, 78788080764, 859446141837, 9375119479443, 102266868132036, 1115560429972953, 12168897861570447, 132742316047301964, 1447996578658751157, 15795220049198960763, 172299423962529817236, 1879498443538629028833, 20502183454962389499927
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (11,-1).
Programs
-
Magma
I:=[3,36]; [n le 2 select I[n] else 11*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 23 2019
-
Mathematica
Table[Floor[((3 + Sqrt[13])/2)^(2*n + 1) + ((3 + Sqrt[13])/2)^(1 - 2 n)], {n, 21}] (* Michael De Vlieger, Jun 20 2015 *) LinearRecurrence[{11, -1}, {3, 36}, 25] (* Vincenzo Librandi, Jul 23 2019 *)
-
PARI
for(n=1,20,q=((3+sqrt(13))/2)^(2*n-1);print1(contfrac(q)[1],", "))
Formula
G.f.: 3*x*(1+x)/(1-11*x+x^2).
a(n) = 11*a(n-1) - a(n-2); a(0) = 3, a(1) = 36.
a(n) = floor(((3+sqrt(13))/2)^(2*n+1)+((3+sqrt(13))/2)^(1-2*n)).
a(n) = 3*A097783(n-1). - R. J. Mathar, Jun 07 2016
Comments