cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A341351 a(n) = A048673(A181815(n)).

Original entry on oeis.org

1, 2, 5, 3, 14, 8, 41, 23, 4, 122, 13, 68, 11, 365, 38, 203, 32, 1094, 113, 18, 608, 6, 63, 95, 3281, 338, 53, 1823, 17, 188, 284, 9842, 1013, 158, 5468, 50, 563, 25, 851, 29525, 88, 3038, 28, 313, 473, 16403, 149, 1688, 74, 2552, 88574, 263, 9113, 7, 83, 938, 1418, 49208, 446, 5063, 221, 7655, 265721, 788, 27338, 20
Offset: 1

Views

Author

Keywords

Comments

Maxima are in A007051 and appear at n in A025488, which are the indices of 2^k in A025487. 2^k is idempotent via A181815 but transformed by A003961 to 3^n, which are rendered by A048673 to (3^n + 1)/2.
Local minima are in A111333 and appear at n in A098719, which are the indices of P(k) = A002110(k) in A025487. P(k) is transformed by A181815 to p_k = A000040(k), which become p_(k+1) under A003961. Therefore these become (p_(k+1)+1)/2 via A048673.

Crossrefs

Cf. A341352 (inverse).
Cf. A007051 (record values).

Programs

  • Mathematica
    a025487[n_] := {{1}}~Join~Block[{lim = Product[Prime@ i, {i, n}], ww = NestList[Append[#, 1] &, {1}, n - 1]}, Map[Block[{w = #, k = 1}, Sort@ Prepend[If[Length@ # == 0, #, #[[1]]], Product[Prime@ i, {i, Length@ w}]] &@ Reap[Do[If[# < lim, Sow[#]; k = 1, If[k >= Length@ w, Break[], k++]] &@ Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, #]] &@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1]]], {i, Infinity}]][[-1]] ] &, ww]]; Map[(1 + If[# == 1, 1, Apply[Times, NextPrime[#1]^#2 & @@@ FactorInteger[#]]])/2 &@ Apply[Times, Prime@ Table[LengthWhile[#1, # >= j &], {j, #2}] & @@ {#, Max[#]} &@ If[# == 1, {0}, Function[f, ReplacePart[ConstantArray[0, PrimePi@ f[[-1, 1]] ], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #]] &, Union@ Flatten@ a025487@ 5] (* Michael De Vlieger, Feb 11 2021 *)
  • PARI
    A341351(n) = A048673(A181815(n));

Formula

a(n) = A048673(A181815(n)).
For all n >= 1, A181812(a(n)) = A025487(n).

A346043 a(n) is the position of A138534(n) in A025487.

Original entry on oeis.org

1, 2, 6, 17, 67, 166, 676, 1373, 4475, 10446, 30036, 51032, 196386, 315302, 737515, 1654229, 4227565, 6301902, 17975187, 26010425, 70085244, 133337963
Offset: 0

Views

Author

Amiram Eldar, Jul 02 2021

Keywords

Examples

			A138534(2) = A025487(6) = 12, so a(2) = 6.
		

Crossrefs

Similar sequences: A098718, A098719, A293635, A306802.

Programs

  • Mathematica
    lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; s = {}; Do[p = Position[lps, Product[Prime[k]^Floor[n/k], {k, 1, n}]]; If[p == {}, Break[]]; AppendTo[s, p[[1, 1]]], {n, 0, 20}]; s
  • PARI
    f(m) = my(c=1, p, q=2, v=vector(logint(m, 2), i, 2^i), w); while(#v, c+=#v; p=q; q=nextprime(q+1); w=List([]); for(i=1, #v, for(j=1, min(valuation(v[i], p), logint(m\v[i], q)), listput(w, v[i]*q^j))); v=w); c;
    a(n) = f(prod(k=1, n, prime(k)^(n\k))); \\ Jinyuan Wang, Jul 08 2021

Formula

A025487(a(n)) = A138534(n).

Extensions

a(20)-a(21) from Jinyuan Wang, Jul 08 2021

A307133 T(n,m) = number of k <= A002110(n) such that A001221(k) = m, where k is a term in A025487.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 9, 4, 1, 1, 11, 21, 15, 5, 1, 1, 14, 38, 36, 18, 6, 1, 1, 18, 64, 79, 53, 23, 7, 1, 1, 23, 97, 148, 122, 63, 26, 7, 1, 1, 27, 140, 258, 251, 157, 76, 30, 7, 1, 1, 32, 196, 425, 480, 349, 195, 89, 33, 8, 1, 1, 37, 261, 655, 853
Offset: 0

Views

Author

Michael De Vlieger, Mar 26 2019

Keywords

Comments

Terms m in A025487 are products of p_i# in A002110.
The primorial A002110(n) is the smallest number k that is the product of the n smallest primes (i.e., A001221(k) = n) and is a subset of A025487.

Examples

			Row 3 = {1,4,3,1}. The terms k in A025487 such that k <= A002110(3) are {1, 2, 4, 6, 8, 12, 16, 24, 30}. Of these, 1 has 0 distinct prime divisors, 4 {2,4,8,16} have 1 distinct prime divisor, 3 {6,12,24} have 2 distinct prime divisors, and 1 {30} has 3 distinct prime divisors.
Triangle begins:
   0: 1
   1: 1   1
   2: 1   2    1
   3: 1   4    3    1
   4: 1   7    9    4     1
   5: 1  11   21   15     5     1
   6: 1  14   38   36    18     6    1
   7: 1  18   64   79    53    23    7    1
   8: 1  23   97  148   122    63   26    7    1
   9: 1  27  140  258   251   157   76   30    7    1
  10: 1  32  196  425   480   349  195   89   33    8   1
  11: 1  37  261  655   853   700  443  228  102   37   9   1
  12: 1  42  340  975  1438  1323  928  533  268  119  41  11   1
  ...
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 12, f, w}, f[n_] := {{1}}~Join~Block[{lim = Product[Prime@ i, {i, n}], ww = NestList[Append[#, 1] &, {1}, n - 1], g}, g[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]]; Map[Block[{w = #, k = 1}, Sort@ Prepend[If[Length@ # == 0, #, #[[1]]], Product[Prime@ i, {i, Length@ w}]] &@ Reap[Do[If[# < lim, Sow[#]; k = 1, If[k >= Length@ w, Break[], k++]] &@ g@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1]]], {i, Infinity}]][[-1]]] &, ww]]; s = MapAt[Flatten, f@ nn, 1]; Array[Function[P, TakeWhile[Map[Count[#, _?(# <= P &)] &, s, {1}], # > 0 &]]@ Product[Prime@ i, {i, #}] &, nn + 1, 0]] // Flatten

Formula

T(n,0) = T(n,n) = A000012(n).
T(n,1) = A054850(n).
A098719(n) = sum of row n.

A346407 a(n) is the position of A051451(n) in A025487.

Original entry on oeis.org

1, 2, 4, 6, 13, 29, 36, 55, 112, 223, 264, 514, 956, 1749, 2345, 2847, 5005, 8567, 9507, 16073, 26792, 43730, 70482, 88969, 140871, 221370, 342958, 368588, 565510, 859401, 1290994, 1927925, 2128165, 3142980, 4616207, 6754033, 9810997, 14133201, 20230329, 28744301
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2021

Keywords

Comments

Equivalently, the positions of the distinct terms of A003418 in A025487.

Examples

			A138534(1) = A025487(1) = 1, so a(1) = 1.
A138534(2) = A025487(2) = 2, so a(2) = 2.
A138534(3) = A025487(4) = 6, so a(3) = 4.
		

Crossrefs

Similar sequences: A098718, A098719, A293635, A306802, A346043.

Programs

  • Mathematica
    lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; s = {}; lcms = Union @ Table[LCM @@ Range[n], {n, 1, 31}]; Do[p = Position[lps, lcms[[n]]]; If[p == {}, Break[]]; AppendTo[s, p[[1, 1]]], {n, 1, Length[lcms]}]; s

Formula

A025487(a(n)) = A003418(n).

A363456 Positions of the terms of the Chernoff sequence (A006939) in A025487.

Original entry on oeis.org

1, 2, 6, 27, 150, 900, 5697, 37226, 246280, 1648592, 11204274
Offset: 0

Views

Author

Amiram Eldar, Jun 03 2023

Keywords

Comments

Indices of records in A363455.

Examples

			A006939(0) = A025487(1) = 1, so a(0) = 1.
A006939(1) = A025487(2) = 2, so a(1) = 2.
A006939(2) = A025487(6) = 12, so a(2) = 6.
		

Crossrefs

Programs

  • Mathematica
    lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]];
    cher = Table[Product[Prime[k]^(n - k + 1), {k, 1, n}], {n, 0, 8}]
    Position[lps, #] & /@ cher // Flatten

Formula

A025487(a(n)) = A006939(n).
A363455(a(n)) = n.
Previous Showing 11-15 of 15 results.