cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A354428 Primes p such that q divides p^2 + p + 1, r divides q + 1 and p divides r^2 + r + 1 for some primes q and r.

Original entry on oeis.org

3, 7, 43, 73363, 1477111
Offset: 1

Views

Author

Tomohiro Yamada, May 27 2022

Keywords

Comments

There are no other terms below 2^24.
The first five terms correspond to 7, 2, 79, 9829, and 5569 in A354426 respectively.
Similarly, these correspond to 13, 3 (or 19), 631, 1794067711, and 10855016833 in A354427 respectively.

Examples

			43 is a term since 43^2 + 43 + 1 = 3 * 631, 631 + 1 = 2^3 * 79, and 79^2 + 79 + 1 = 3 * 7^2 * 43.
		

Crossrefs

Cf. A354426 (r corresponding to primes p in this sequence), A354427 (q corresponding to primes p in this sequence).

Programs

  • PARI
    is(p)={my(W, V1, V2, V3, q1, q2, q3, i1, i2, i3, l1, l2, l3); W=0; V1=factor(p^2+p+1); l1=length(V1[, 1]); for(i1=1, l1, q1=V1[i1, 1]; V2=factor(q1+1); l2=length(V2[, 1]); for(i2=1, l2, q2=V2[i2, 1]; V3=factor(q2^2+q2+1); l3=length(V3[, 1]); for(i3=1, l3, q3=V3[i3, 1]; if(q3==p, W=[p, q1, q2])))); W}

A357870 Triangle of integers related to generalized Markov numbers, read by rows.

Original entry on oeis.org

3, 13, 51, 61, 217, 846, 291, 1001, 3673, 14637, 1393, 4683, 16693, 62221, 247965, 6673, 22265, 77064, 282317, 1054081, 4200768, 31971, 106153, 360517, 1285131, 4778353, 17857153, 71165091
Offset: 1

Views

Author

Michel Marcus, Oct 17 2022

Keywords

Examples

			Triangle begins:
  3;
  13, 51;
  61, 217, 846;
  291, 1001, 3673, 14637;
  1393, 4683, 16693, 62221, 247965;
  ...
		

Crossrefs

Cf. A101368 (1st column).
A357749 \ {1} is a subset.

A355298 Primes p such that q divides p + 1, r divides q^2 + q + 1, s divides r^2 + r + 1, and p divides s^2 + s + 1 for some primes q, r, and s.

Original entry on oeis.org

3, 13, 61, 127, 399403
Offset: 1

Views

Author

Tomohiro Yamada, Jun 28 2022

Keywords

Comments

There are no other terms below 2^24.
If rad(n)^2 = sigma(n), where rad(n) = A007927(n) is the largest squarefree number dividing n and sigma(n) = A000203(n) is the sum of divisors of n, and there exists just one odd prime factor p dividing n exactly once, then p must belong to A354427 or this sequence.

Examples

			61 is a term since 61 + 1 = 2 * 31, 31^2 + 31 + 1 = 3 * 331, 3^2 + 3 + 1 = 13, and 13^2 + 13 + 1 = 3 * 61.
		

Crossrefs

Programs

  • PARI
    is(p)={my(W, V1, V2, V3, V4, q1, q2, q3, q4, i1, i2, i3, i4, l1, l2, l3, l4); W=0; V1=factor(p+1); l1=length(V1[, 1]); for(i1=1, l1, q1=V1[i1, 1]; V2=factor(q1^2+q1+1); l2=length(V2[, 1]); for(i2=1, l2, q2=V2[i2, 1]; V3=factor(q2^2+q2+1); l3=length(V3[, 1]); for(i3=1, l3, q3=V3[i3, 1]; V4=factor(q3^2+q3+1); l4=length(V4[, 1]); for(i4=1, l4, q4=V4[i4, 1];if(q4==p, W=[p, q1, q2, q3]))))); W}
Previous Showing 11-13 of 13 results.