cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A102400 Triangle, read by rows, where T(n,k) = Sum_{j=0..k} T(n-1,j)*(j+1)*[(k+1)*(k+2)/2 - j*(j+1)/2] for n>k>0, with T(0,0)=1 and T(n,n) = T(n,n-1) for n>0.

Original entry on oeis.org

1, 1, 1, 1, 7, 7, 1, 31, 139, 139, 1, 127, 1567, 5711, 5711, 1, 511, 15379, 126579, 408354, 408354, 1, 2047, 143527, 2357431, 15333661, 45605881, 45605881, 1, 8191, 1312219, 40769819, 473433344, 2634441290, 7390305396, 7390305396, 1, 32767
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2005

Keywords

Comments

Main diagonal is A082162 (with offset). This sequence is derived from column 0 of A102098.

Examples

			T(4,2) = 1567 = 1*6 + 31*10 + 139*9
= T(3,0)*R(0,2) + T(3,1)*R(1,2) + T(3,2)*R(2,2).
Rows begin:
[1],
[1,1],
[1,7,7],
[1,31,139,139],
[1,127,1567,5711,5711],
[1,511,15379,126579,408354,408354],
[1,2047,143527,2357431,15333661,45605881,45605881],...
where the transpose of the recurrence coefficients given by
[R^t](n,k) = (k+1)*((n+1)*(n+2)/2 - k*(k+1)/2) form triangle:
[1],
[3,4],
[6,10,9],
[10,18,21,16],
[15,28,36,36,25],...
which equals the matrix square of the triangle:
[1],
[1,2],
[1,2,3],
[1,2,3,4],
[1,2,3,4,5],...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[nJean-François Alcover, Dec 15 2014, after PARI *)
  • PARI
    {T(n,k)=if(n
    				

A102918 Column 1 of triangle A102916.

Original entry on oeis.org

0, 2, 4, 8, 40, 152, 1128, 6200, 61120, 442552, 5466320, 49399320, 735847800, 8003532512, 139910204080, 1784040237288, 35858685086352, 525504809786112, 11953187179149408, 198213959637435608, 5037776918810353960
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2005

Keywords

Comments

Also equals the interleaving of A102099 with A102922, which equal column 1 of triangle A102098 and its matrix square (A102920), respectively.

Examples

			2 = 2*(1-2x) + 4*x*(1-2x) + 8*x^2*(1-2x)(1-3x) + 40*x^3*(1-2x)(1-3x)
+ 152*x^4*(1-2x)(1-3x)(1-4x) + 1128*x^5*(1-2x)(1-3x)(1-4x)
+ 6200*x^6*(1-2x)(1-3x)(1-4x)(1-5x) + 61120*x^7*(1-2x)(1-3x)(1-4x)(1-5x) +...
+ A102099(n+1)*x^(2n)*(1-2x)(1-3x)*..*(1-(n+2)x)
+ A102922(n+1)*x^(2n+1)*(1-x)(1-2x)*..*(1-(n+2)x) + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,2,polcoeff(2-sum(k=0,n-1,a(k)*x^k*prod(j=2,k\2+2,1-j*x+x*O(x^n))),n))}

Formula

G.f.: 2 = Sum_{n>=0}(a(2*n+1)+a(2*n+2)*x)*x^(2*n)*Product_{k=2..n+2}(1-k*x) where a(2*n+1)=A102099(n+1) and a(2*n+2)=A102922(n+1) with a(0)=0.

A103241 Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (-k^3)^(n-k)/(n-k)! for n >= k >= 1.

Original entry on oeis.org

1, 1, 1, 15, 8, 1, 1024, 368, 27, 1, 198581, 53672, 2727, 64, 1, 85102056, 18417792, 710532, 11904, 125, 1, 68999174203, 12448430408, 386023509, 4975936, 38375, 216, 1, 95264160938080, 14734002979456, 381535651512, 3977848832, 23945000
Offset: 1

Views

Author

Paul D. Hanna, Feb 02 2005

Keywords

Comments

Define a triangular matrix P where P(n,k) = (-k^3)^(n-k)/(n-k)!, then M = P*D*P^-1 = A102098 satisfies M^3 = SHIFTUP(M) where D is the diagonal matrix consisting of {1,2,3,...}. The operation SHIFTUP(M) shifts each column of M up 1 row.
Essentially equal to square array A082170 as a triangular matrix. The first column is A082162 (enumerates acyclic automata with 3 inputs).

Examples

			Rows of unreduced fractions T(n,k)/(n-k)! begin:
  [1/0!],
  [1/1!, 1/0!],
  [15/2!, 8/1!, 1/0!],
  [1024/3!, 368/2!, 27/1!, 1/0!],
  [198581/4!, 53672/3!, 2727/2!, 64/1!, 1/0!],
  [85102056/5!, 18417792/4!, 710532/3!, 11904/2!, 125/1!, 1/0!], ...
forming the inverse of matrix P where P(n,k) = A103246(n,k)/(n-k)!:
  [1/0!],
  [-1/1!, 1/0!],
  [1/2!, -8/1!, 1/0!],
  [-1/3!, 64/2!, -27/1!, 1/0!],
  [1/4!, -512/3!, 729/2!, -64/1!, 1/0!], ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(-c^3)^(r-c)/(r-c)!))); return(if(n
    				

Formula

For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(-m^3)^(n-m)*T(m, k).
For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(-k^3)^(j-k)*T(n, j).
Previous Showing 11-13 of 13 results.