cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A332321 Numbers k that are norm-superabundant in Gaussian integers, i.e., A103230(m)/m^2 < A103230(k)/k^2 for all m < k.

Original entry on oeis.org

1, 2, 6, 10, 30, 90, 130, 210, 390, 1170, 2730, 5850, 6630, 19890, 46410, 99450, 139230, 192270, 576810, 1345890, 2884050, 4037670, 7883070, 12113010, 20188350, 23649210, 44414370, 49797930, 55181490, 118246050, 149393790, 165544470, 496633410, 746968950, 827722350
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Comments

Analogous to superabundant numbers (A004394), with the magnitude of the sum of divisors function generalized for Gaussian integers (sqrt(A103230)) instead of the sum of divisors function (A000203).

Examples

			The first 6 terms of A103230 are 1, 13, 16, 41, 80, 208. The corresponding values of A103230(n)/n^2 are 1, 3.25, 1.777..., 2.5625, 3.2, 5.777... and the record values occur at n = 1, 2, 6, the first 3 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := Abs[DivisorSigma[1, n, GaussianIntegers -> True]]^2/n^2; rm = 0; seq = {}; Do[r1 = r[n]; If[r1 > rm, rm = r1; AppendTo[seq, n]], {n, 1, 6*10^5}]; seq

A332571 Numbers that are primitive norm-abundant in Gaussian integers.

Original entry on oeis.org

5, 9, 13, 21, 33, 119, 187, 203, 287, 543, 699, 807, 831, 843, 879, 939, 951, 1011, 1047, 1059, 1119, 1167, 1191, 1263, 1299, 1311, 1347, 1383, 1563, 1671, 1767, 1769, 1961, 2117, 2139, 2173, 2257, 2451, 2501, 2581, 2679, 2813, 2929, 2967, 2993, 3161, 3233, 3243
Offset: 1

Views

Author

Amiram Eldar, Feb 16 2020

Keywords

Comments

Numbers that are norm-abundant (A332570) in Gaussian integers and having no norm-abundant proper divisor.

Examples

			5 is primitive norm-abundant since it is norm-abundant, sigma(5) = 4 + 8*i and N(4 + 8*i) = 4^2 + 8^2 = 80 > 2 * 5^2 = 50, and none of the proper divisors of 5, {1, 1 + 2*i, 2 + i}, are norm-abundant: N(sigma(1)) = 1 < 2 * 1^2, N(sigma(1 + 2*i)) = N(2 + 2*i) = 8 < 2 * N(1 + 2*i) = 10, and N(sigma(2 + i)) = N(3 + i) = 10 = 2 * N(2 + i). (sigma(k) = A103228(k) + i*A103229(k) is the sum of divisors of k in Gaussian integers, i is the imaginary unit, and N(z) = Re(z)^2 + Im(z)^2 is the norm of the complex number z.)
		

References

  • Miriam Hausman, On Norm Abundant Gaussian Integers, The Journal of the Indian Mathematical Society, Vol. 49 (1987), pp. 119-123.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, page 120.

Crossrefs

Programs

  • Mathematica
    normAbQ[z_] := normAbQ[z] = Abs[DivisorSigma[1, z, GaussianIntegers -> True]]^2 > 2*Abs[z]^2; primNormAbQ[z_] := normAbQ[z] && !AnyTrue[Most[Divisors[z, GaussianIntegers -> True]], normAbQ]; Select[Range[1000], primNormAbQ]

A332573 Numbers k such that k and k + 1 are both norm-deficient in Gaussian integers (A332572).

Original entry on oeis.org

7, 16, 127, 128, 151, 248, 256, 343, 472, 536, 568, 631, 632, 751, 752, 823, 856, 943, 1048, 1111, 1136, 1207, 1303, 1327, 1328, 1336, 1432, 1527, 1528, 1591, 1687, 1688, 1711, 1712, 1783, 1816, 1912, 2031, 2032, 2047, 2048, 2103, 2167, 2263, 2416, 2487, 2488
Offset: 1

Views

Author

Amiram Eldar, Feb 16 2020

Keywords

Examples

			7 is a term since both 7 and 7 + 1 = 8 are norm-deficient in Gaussian integers (A332572).
		

Crossrefs

Programs

  • Mathematica
    normDefQ[z_] := Abs[DivisorSigma[1, z, GaussianIntegers -> True]]^2 < 2*Abs[z]^2; Select[Range[2500], normDefQ[#] && normDefQ[# + 1] &]

A332315 Numbers k such that k and k + 1 have the same norm of the sum of divisors in Gaussian integers.

Original entry on oeis.org

30514, 36777, 43978, 3474262, 5745125, 10628554, 16567494, 40831527, 58008301, 111798477, 142981839, 288834504, 392413941, 580867202, 650141557, 944224497, 967593411, 1874210882, 6306287377, 6442064745, 7377567197, 8121464245
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Comments

The first term, 30514, is also a number k such that k and k + 1 have the sum divisors in Gaussian integers: -54720 + 48960*i (where i is the imaginary unit). What is the next term with this property?
No more terms below 1.5*10^10.

Examples

			30514 is a term since A103230(30514) = A103230(30515) = 5391360000.
		

Crossrefs

Programs

  • Mathematica
    csigma[n_] :=(Abs @ DivisorSigma[1, n, GaussianIntegers -> True])^2; seq = {}; n1 = csigma[1]; Do[n2 = csigma[n]; If[n1 == n2, AppendTo[seq, n - 1]]; n1 = n2, {n, 2, 5*10^5}]; seq

A332532 Even numbers k such that the sum of divisors of k in Gaussian integers is a real number.

Original entry on oeis.org

10250, 30750, 40400, 71750, 92250, 112750, 121200, 194750, 215250, 235750, 276750, 282800, 308050, 317750, 338250, 363600, 440750, 444400, 467860, 481750, 502250, 584250, 604750, 645750, 686750, 707250, 727750, 767600, 789250, 809750, 830250, 848400, 850750
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2020

Keywords

Comments

Even numbers k such that A103229(k) = 0.
The odd numbers with this property are the numbers that are divisible only by primes congruent to 3 mod 4 (A004614).

Examples

			10250 is a term since its sum of divisors in Gaussian integers is 41600 which is a real number.
		

Crossrefs

Subsequence of A332531.

Programs

  • Mathematica
    Select[Range[2, 10^6, 2], Im[DivisorSigma[1, #, GaussianIntegers -> True]] == 0 &]

A332574 Numbers k such that k, k + 1 and k + 2 are all norm-deficient in Gaussian integers (A332572).

Original entry on oeis.org

127, 631, 751, 1327, 1527, 1687, 1711, 2031, 2047, 2487, 2647, 3207, 3271, 3351, 3511, 3831, 4567, 4791, 4911, 5127, 6007, 6087, 6711, 7431, 8247, 8367, 8391, 8407, 8551, 8751, 8871, 9031, 9447, 9991, 10407, 10551, 10887, 10927, 11631, 12471, 12567, 12631, 13807
Offset: 1

Views

Author

Amiram Eldar, Feb 16 2020

Keywords

Examples

			127 is a term since 127, 128 and 129 are all norm-deficient in Gaussian integers (A332572).
		

Crossrefs

Programs

  • Mathematica
    normDefQ[z_] := Abs[DivisorSigma[1, z, GaussianIntegers -> True]]^2 < 2*Abs[z]^2; Select[Range[10^4], AllTrue[# + Range[0, 2], normDefQ] &]

A332575 Least start of a run of exactly n consecutive numbers that are norm-abundant in Gaussian integers (A332570).

Original entry on oeis.org

2, 9, 4, 12, 24, 185, 114, 1649, 692, 4977, 1412, 416345, 22624, 72233, 199892, 25262152, 1351880, 130824185, 16305324, 1688906313, 9412730, 10393378914, 721753400
Offset: 1

Views

Author

Amiram Eldar, Feb 16 2020

Keywords

Examples

			a(2) = 9 since 9 and 10 are the least pair of 2 consecutive numbers that are norm-abundant in Gaussian integers, and 8 and 11 are not norm-abundant.
		

Crossrefs

Programs

  • Mathematica
    normAbQ[z_] := Abs[DivisorSigma[1, z, GaussianIntegers -> True]]^2 > 2*Abs[z]^2; n = 1; count = 0; max = 15; seq = Table[0, {max}]; While[count < max, n1 = n; If[normAbQ[n], While[normAbQ[++n1]]; d = n1 - n; If[d <= max && seq[[d]] == 0, count++; seq[[d]] = n]]; n = n1 + 1]; seq
Previous Showing 11-17 of 17 results.