A105105
Triangle read by rows, based on the morphism f: 1-> 2->3 3->{6,5,4} 4->5 5->6 6->{3,2,1}. First row is 1. If current row is a,b,c,..., then the next row is a,b,c,...,f(a),f(b),f(c),...
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 6, 5, 4, 1, 2, 2, 3, 2, 3, 3, 6, 5, 4, 2, 3, 3, 6, 5, 4, 3, 6, 5, 4, 6, 5, 4, 3, 2, 1, 6, 5, 1, 2, 2, 3, 2, 3, 3, 6, 5, 4, 2, 3, 3, 6, 5, 4, 3, 6, 5, 4, 6, 5, 4, 3, 2, 1, 6, 5, 2, 3, 3, 6, 5, 4, 3, 6, 5, 4, 6, 5, 4, 3, 2, 1, 6, 5, 3, 6, 5, 4, 6, 5, 4, 3, 2, 1, 6, 5, 6, 5
Offset: 0
Triangle begins:
1,
1, 2,
1, 2, 2, 3,
1, 2, 2, 3, 2, 3, 3, 6, 5, 4,
1, 2, 2, 3, 2, 3, 3, 6, 5, 4, 2, 3, 3, 6, 5, 4, 3, 6, 5, 4, 6, 5, 4, 3, 2, 1, 6, 5,
...
-
s[n_] := n /. {1 -> 2, 2 -> 3, 3 -> {6, 5, 4}, 4 -> 5, 5 -> 6, 6 -> {3, 2, 1}}; t[a_] := Join[a, Flatten[s /@ a]]; Flatten[ NestList[t, {1}, 5]]
NestList[ Flatten[ Join[ #, # /. {1 -> {2}, 2 ->{3}, 3 ->{6,5,4}, 4 ->{5}, 5-> {6}, 6-> {3,2,1}} ]] &, {1}, 5] // Flatten (* Robert G. Wilson v, Jun 05 2014 *)
A105113
Triangle read by rows, based on the morphism f: 1->2, 2->3, 3->{3,5,5,5,4}, 4->5, 5->6, 6->{6,2,2,2,1}. First row is 1. If current row is a,b,c,..., then the next row is a,b,c,...,f(a),f(b),f(c),...
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 3, 5, 5, 5, 4, 1, 2, 2, 3, 2, 3, 3, 3, 5, 5, 5, 4, 2, 3, 3, 3, 5, 5, 5, 4, 3, 3, 5, 5, 5, 4, 3, 5, 5, 5, 4, 3, 5, 5, 5, 4, 6, 6, 6, 5, 1, 2, 2, 3, 2, 3, 3, 3, 5, 5, 5, 4, 2, 3, 3, 3, 5, 5, 5, 4, 3, 3, 5, 5, 5, 4, 3, 5, 5, 5, 4, 3, 5, 5, 5, 4, 6, 6, 6, 5, 2, 3, 3, 3, 5, 5
Offset: 0
-
s[n_] := n /. {1 -> 2, 2 -> 3, 3 -> {3, 5, 5, 5, 4}, 4 -> 5, 5 -> 6, 6 -> {6, 2, 2, 2, 1}}; t[a_] := Join[a, Flatten[s /@ a]] p[0] = {1}; p[1] = t[{1}]; Flatten[ NestList[t, {1}, 5]]
A119647
Fixed point of the morphism 1->{1,2}, 2->{1,3}, 3->{1}.
Original entry on oeis.org
1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3
Offset: 1
-
Nest[Flatten[Join[ #, # /. {1 -> {1, 2}, 2 -> {1, 3}}]] &, {1}, 5] // Flatten
A138061
This sequence is a triangular sequence formed by the substitution: ( French sideways graph) 1->1,2;2->3;3->4;4->1; as a Markov style substitution form. The result is the differential polynomial coefficient form. ( first zero omitted).
Original entry on oeis.org
2, 2, 6, 2, 6, 12, 2, 6, 12, 4, 2, 6, 12, 4, 5, 12, 2, 6, 12, 4, 5, 12, 7, 16, 27, 2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52, 2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52, 14, 30, 48, 68, 18, 2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52, 14, 30, 48, 68, 18, 19, 40, 63, 88, 23, 24
Offset: 1
First zero omitted:
{2},
{2, 6},
{2, 6, 12},
{2, 6, 12, 4},
{2, 6, 12, 4, 5, 12},
{2, 6, 12, 4, 5, 12, 7, 16, 27},
{2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52},
{2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52, 14, 30, 48, 68, 18},
{2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52, 14, 30, 48, 68, 18, 19, 40, 63, 88, 23, 24, 50},
{2, 6, 12, 4, 5, 12, 7, 16, 27, 10, 22, 36, 52, 14, 30, 48, 68, 18, 19, 40, 63, 88, 23, 24, 50, 26, 54, 84, 116, 30, 31, 64, 33, 68, 105}
-
Clear[a, s, p, t, m, n] (* substitution *) s[1] = {1, 2}; s[2] = {3}; s[3] = {4}; s[4] = {1}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]]; a = Table[p[n], {n, 0, 10}]; Flatten[a]; b = Table[CoefficientList[D[Apply[Plus, Table[a[[n]][[m]]*x^(m - 1), {m, 1, Length[a[[n]]]}]], x], x], {n, 1, 11}]; Flatten[b] Table[Apply[Plus, CoefficientList[D[Apply[Plus, Table[a[[n]][[m]]*x^(m - 1), {m, 1, Length[a[[n]]]}]], x], x]], {n, 1, 11}];
Comments