cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A354302 a(n) is the numerator of Sum_{k=0..n} 1 / (k!)^2.

Original entry on oeis.org

1, 2, 9, 41, 1313, 5471, 1181737, 28952557, 1235309099, 150090055529, 30018011105801, 201787741322329, 523033825507476769, 44196358255381786981, 5774990812036553498851, 1949059399062336805862213, 997918412319916444601453057, 3697415655903280160125896583
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Numerator
    nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator

Formula

Numerators of coefficients in expansion of BesselI(0,2*sqrt(x)) / (1 - x).

A354304 a(n) is the numerator of Sum_{k=0..n} (-1)^k / (k!)^2.

Original entry on oeis.org

1, 0, 1, 2, 43, 403, 23213, 118483, 51997111, 1842647621, 327581799289, 8918414485643, 4670006130663971, 361730891537680087, 130890931830249779173, 427294615628884602769, 6534075316966068976316143, 885163015595247156635327497, 41526561745210509140249210357
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 0, 1/4, 2/9, 43/192, 403/1800, 23213/103680, 118483/529200, 51997111/232243200, 1842647621/8230118400, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(k!)^2, {k, 0, n}], {n, 0, 18}] // Numerator
    nmax = 18; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator

Formula

Numerators of coefficients in expansion of BesselJ(0,2*sqrt(x)) / (1 - x).

A354138 a(n) is the numerator of Sum_{k=0..n} (-1)^k / (2*k)!.

Original entry on oeis.org

1, 1, 13, 389, 4357, 1960649, 258805669, 47102631757, 11304631621681, 691843455246877, 1314502564969066301, 607300185015708631061, 335229702128671164345673, 217899306383636256824687449, 32946375125205802031892742289, 848027998784883070051677094421
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 1/2, 13/24, 389/720, 4357/8064, 1960649/3628800, 258805669/479001600, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(2 k)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Cos[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
  • PARI
    a(n) = numerator(sum(k=0, n, (-1)^k/(2*k)!)); \\ Michel Marcus, May 24 2022

Formula

Numerators of coefficients in expansion of cos(sqrt(x)) / (1 - x).
Previous Showing 11-13 of 13 results.