A354302
a(n) is the numerator of Sum_{k=0..n} 1 / (k!)^2.
Original entry on oeis.org
1, 2, 9, 41, 1313, 5471, 1181737, 28952557, 1235309099, 150090055529, 30018011105801, 201787741322329, 523033825507476769, 44196358255381786981, 5774990812036553498851, 1949059399062336805862213, 997918412319916444601453057, 3697415655903280160125896583
Offset: 0
1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
-
Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Numerator
nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
A354304
a(n) is the numerator of Sum_{k=0..n} (-1)^k / (k!)^2.
Original entry on oeis.org
1, 0, 1, 2, 43, 403, 23213, 118483, 51997111, 1842647621, 327581799289, 8918414485643, 4670006130663971, 361730891537680087, 130890931830249779173, 427294615628884602769, 6534075316966068976316143, 885163015595247156635327497, 41526561745210509140249210357
Offset: 0
1, 0, 1/4, 2/9, 43/192, 403/1800, 23213/103680, 118483/529200, 51997111/232243200, 1842647621/8230118400, ...
-
Table[Sum[(-1)^k/(k!)^2, {k, 0, n}], {n, 0, 18}] // Numerator
nmax = 18; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
A354138
a(n) is the numerator of Sum_{k=0..n} (-1)^k / (2*k)!.
Original entry on oeis.org
1, 1, 13, 389, 4357, 1960649, 258805669, 47102631757, 11304631621681, 691843455246877, 1314502564969066301, 607300185015708631061, 335229702128671164345673, 217899306383636256824687449, 32946375125205802031892742289, 848027998784883070051677094421
Offset: 0
1, 1/2, 13/24, 389/720, 4357/8064, 1960649/3628800, 258805669/479001600, ...
Cf.
A010050,
A049470,
A053557,
A061354,
A103816,
A120265,
A143382,
A354211,
A354332,
A354334,
A354378 (denominators).
-
Table[Sum[(-1)^k/(2 k)!, {k, 0, n}], {n, 0, 15}] // Numerator
nmax = 15; CoefficientList[Series[Cos[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
-
a(n) = numerator(sum(k=0, n, (-1)^k/(2*k)!)); \\ Michel Marcus, May 24 2022