cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A338482 Least number of centered triangular numbers that sum to n.

Original entry on oeis.org

1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 2, 3, 4, 2, 3, 4, 5, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 29 2020

Keywords

Comments

It appears that a(n) = 3 for n == 0 (mod 3), 1 <= a(n) <= 4 for n == 1 (mod 3), and 2 <= a(n) <= 5 for n == 2 (mod 3). - Robert Israel, Nov 13 2020

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local r,i;
        r:= sqrt(24*n-15)/6+1/2;
        if r::integer then return 1 fi;
        1+min(seq(procname(n-(3*i*(i-1)/2+1)),i=1..floor(r)))
    end proc:
    map(f, [$1..200]); # Robert Israel, Nov 13 2020
  • Mathematica
    f[n_] := f[n] = Module[{r}, r = Sqrt[24n-15]/6+1/2; If[IntegerQ[r], Return[1]]; 1+Min[Table[f[n-(3i*(i-1)/2+1)], {i, 1, Floor[r]}]]];
    Map[f, Range[200]] (* Jean-François Alcover, Sep 16 2022, after Robert Israel *)

A338493 Least number of square pyramidal numbers needed to represent n.

Original entry on oeis.org

1, 2, 3, 4, 1, 2, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 2, 3, 1, 2, 3, 3, 4, 2, 3, 4, 4, 5, 3, 4, 3, 4, 2, 3, 4, 4, 5, 3, 4, 5, 5, 6, 4, 1, 2, 3, 3, 4, 2, 3, 4, 4, 5, 3, 4, 5, 5, 2, 3, 4, 4, 5, 3, 4, 5, 5, 6, 4, 5, 6, 6, 3, 4, 2, 3, 4, 4, 5, 3, 1, 2, 3, 4, 4, 2, 3, 4, 3, 4, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 30 2020

Keywords

Crossrefs

A102801 Let f(n) be the minimal number of distinct nonzero tetrahedral numbers that add to n (or -1 if n is not a sum of distinct tetrahedral numbers); sequence gives numbers n for which f(n) = 2.

Original entry on oeis.org

5, 11, 14, 21, 24, 30, 36, 39, 45, 55, 57, 60, 66, 76, 85, 88, 91, 94, 104, 119, 121, 124, 130, 140, 155, 166, 169, 175, 176, 185, 200, 204, 221, 224, 230, 240, 249, 255, 276, 285, 287, 290, 296, 304, 306, 321, 340, 342, 365, 368, 370, 374, 384
Offset: 1

Views

Author

Jud McCranie, Feb 26 2005

Keywords

Examples

			680 (of A034404) is a sum of two distinct positive tetrahedral numbers but not in the list because it is also a tetrahedral number itself. - _R. J. Mathar_, Jun 05 2025
		

Crossrefs

Cf. A000292, A104246, A102795, etc.

A283370 Minimal number of terms required to write n as sum of numbers in A000389 = { C(k,5); k=1,2,3,... } (with repetitions allowed).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6
Offset: 0

Views

Author

M. F. Hasler, Mar 06 2017

Keywords

Comments

Analog, for A000389 = {C(n,5)}, of A061336 (for triangular numbers A000217 = {C(n,2)}), A104246 (for tetrahedral numbers A000292 = {C(n,3)}) and A283365 (for A000332 = {C(n,4)}).

Crossrefs

Cf. A000332 = {C(n,4)}; A061336 (analog for A000217), A104246 (analog for A000292), A283365 (analog for A000332).

Programs

  • PARI
    {a(n,k=5,M=9e9,N=n) = n>k || return(n); for(m=k,M,binomial(m,k)>n && (M=m) && break); M-- <= k && return(n); my(b=binomial(M,k),c=binomial(M-1,k),NN); forstep( nn=n\b,0,-1, if(N>NN=nn+a(n-nn*b,k,M,N),N=NN); n-(nn-1)*b >= (N-nn+1)*c && break); N}

Formula

a(n) <= 10 = a(220) for all n, according to Kim (2003, p. 74, first row of table "d = 5"), but this "numerical result" has no "* denoting exact values" (see Remark at end of paper), so it could be incorrect. [Disclaimer added by M. F. Hasler, Sep 22 2022]

A290429 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Sum_{j>=0} x^(j*(j+1)*(j+2)/6))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 1, 0, 1, 5, 6, 1, 2, 0, 0, 1, 6, 10, 4, 3, 2, 0, 0, 1, 7, 15, 10, 5, 6, 0, 0, 0, 1, 8, 21, 20, 10, 12, 3, 0, 0, 0, 1, 9, 28, 35, 21, 21, 12, 0, 1, 0, 0, 1, 10, 36, 56, 42, 36, 30, 4, 3, 0, 1, 0, 1, 11, 45, 84, 78, 63, 61, 20, 6, 3, 2, 0, 0, 1, 12, 55, 120, 135, 112, 112, 60, 15, 12, 3, 2, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 31 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k tetrahedral (or triangular pyramidal) numbers (A000292).

Examples

			Square array begins:
1,  1,  1,  1,   1,   1,  ...
0,  1,  2,  3,   4,   5,  ...
0,  0,  1,  3,   6,  10,  ...
0,  0,  0,  1,   4,  10,  ...
0,  1,  2,  3,   5,  10,  ...
0,  0,  2,  6,  12,  21,  ...
		

Crossrefs

Cf. A000007 (column 0), A023533 (column 1), A282172 (column 5).
Main diagonal gives A303170.
Similar to, but different from, A045847.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[x^(i (i + 1) (i + 2)/6), {i, 0, n}]^k, {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (Sum_{j>=0} x^(j*(j+1)*(j+2)/6))^k.

A102802 Let f(n) be the minimal number of distinct nonzero tetrahedral numbers that add to n (or -1 if n is not a sum of distinct tetrahedral numbers); sequence gives numbers n for which f(n) = 3.

Original entry on oeis.org

15, 25, 31, 34, 40, 46, 49, 59, 61, 65, 67, 70, 77, 80, 86, 89, 92, 95, 98, 101, 105, 108, 111, 114, 123, 125, 129, 131, 134, 139, 141, 144, 150, 156, 159, 160, 170, 177, 179, 180, 186, 189, 195, 196, 201, 205, 208, 210, 211, 214, 222, 225, 231
Offset: 1

Views

Author

Jud McCranie, Feb 26 2005

Keywords

Crossrefs

Cf. A000292, A104246, A102795, etc.

A102803 Let f(n) be the minimal number of distinct nonzero tetrahedral numbers that add to n (or -1 if n is not a sum of distinct tetrahedral numbers); sequence gives numbers n for which f(n) = 4.

Original entry on oeis.org

50, 69, 71, 81, 87, 90, 96, 99, 102, 109, 112, 115, 118, 133, 135, 143, 145, 149, 151, 154, 161, 164, 181, 187, 190, 197, 199, 206, 209, 212, 215, 218, 226, 228, 232, 235, 242, 243, 245, 251, 254, 257, 261, 263, 264, 266, 270, 273, 279, 281
Offset: 1

Views

Author

Jud McCranie, Feb 26 2005

Keywords

Crossrefs

Cf. A000292, A104246, A102795, etc.

A330031 Sums of two nonzero tetrahedral numbers (A000292).

Original entry on oeis.org

2, 5, 8, 11, 14, 20, 21, 24, 30, 36, 39, 40, 45, 55, 57, 60, 66, 70, 76, 85, 88, 91, 94, 104, 112, 119, 121, 124, 130, 140, 155, 166, 168, 169, 175, 176, 185, 200, 204, 221, 224, 230, 240, 249, 255, 276, 285, 287, 290, 296, 304, 306, 321, 330, 340, 342, 365
Offset: 1

Views

Author

Peter Kagey, Mar 07 2020

Keywords

Crossrefs

Analogs for other figurate numbers are A000404 (squares), A003325 (cubes), A051533 (triangular numbers), A286636 (centered square numbers), A287960 (centered triangular numbers), A288631 (square pyramidal numbers), A332987 (pentagonal numbers).

A338458 Least number of heptagonal pyramidal numbers needed to represent n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 1, 2, 3, 4, 5, 6, 4, 5, 2, 3, 4, 5, 6, 7, 5, 6, 3, 4, 5, 6, 7, 8, 6, 7, 4, 5, 2, 3, 4, 5, 6, 7, 5, 6, 1, 2, 3, 4, 5, 6, 6, 7, 2, 3, 4, 5, 6, 7, 7, 8, 3, 4, 3, 4, 5, 6, 7, 8, 4, 5, 2, 3, 4, 5, 6, 7, 5, 6, 3, 4, 5, 6, 7, 8, 6, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 31 2020

Keywords

Crossrefs

A338496 Least number of octagonal pyramidal numbers needed to represent n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 4, 5, 1, 2, 3, 4, 5, 6, 4, 5, 6, 2, 3, 4, 5, 6, 7, 5, 6, 7, 3, 4, 5, 6, 7, 8, 6, 7, 8, 4, 5, 6, 2, 3, 4, 5, 6, 7, 5, 6, 7, 3, 1, 2, 3, 4, 5, 6, 7, 8, 4, 2, 3, 4, 5, 6, 7, 8, 9, 5, 3, 4, 3, 4, 5, 6, 7, 8, 6, 4, 5, 4, 2, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 31 2020

Keywords

Crossrefs

Previous Showing 21-30 of 34 results. Next