cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A256550 Triangle read by rows, T(n,k) = EL(n,k)/(n-k+1)! and EL(n,k) the matrix-exponential of the unsigned Lah numbers scaled by exp(-1), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 5, 12, 6, 1, 0, 15, 50, 40, 10, 1, 0, 52, 225, 250, 100, 15, 1, 0, 203, 1092, 1575, 875, 210, 21, 1, 0, 877, 5684, 10192, 7350, 2450, 392, 28, 1, 0, 4140, 31572, 68208, 61152, 26460, 5880, 672, 36, 1
Offset: 0

Views

Author

Peter Luschny, Apr 01 2015

Keywords

Examples

			Triangle starts:
1;
0,    1;
0,    1,    1;
0,    2,    3,    1;
0,    5,   12,    6,    1;
0,   15,   50,   40,   10,    1;
0,   52,  225,  250,  100,   15,   1;
0,  203, 1092, 1575,  875,  210,  21,  1;
		

Crossrefs

Cf. A000110, A000217, A008911, A105479, A256551 (matrix inverse).

Programs

  • Sage
    def T(dim) :
        M = matrix(ZZ, dim)
        for n in range(dim) :
            M[n, n] = 1
            for k in range(n) :
                M[n,k] = (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1))
        E = M.exp()/exp(1)
        for n in range(dim) :
            for k in range(n) :
                M[n,k] = E[n,k]/factorial(n-k+1)
        return M
    T(8) # Computes the sequence as a lower triangular matrix.

Formula

T(n+1,1) = Bell(n) = A000110(n).
T(n+2,2) = C(n+2,2)*Bell(n) = A105479(n+2).
T(n+1,n) = A000217(n).
T(n+2,n) = A008911(n+1).

A355266 Triangle read by rows, T(n, k) = (-1)^(n-k)*Bell(k)*Stirling1(n+1, k+1), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 6, 11, 12, 5, 24, 50, 70, 50, 15, 120, 274, 450, 425, 225, 52, 720, 1764, 3248, 3675, 2625, 1092, 203, 5040, 13068, 26264, 33845, 29400, 16744, 5684, 877, 40320, 109584, 236248, 336420, 336735, 235872, 110838, 31572, 4140
Offset: 0

Views

Author

Peter Luschny and Mélika Tebni, Jul 05 2022

Keywords

Examples

			Triangle T(n, k) begins:
[0]    1;
[1]    1,      1;
[2]    2,      3,     2;
[3]    6,     11,    12,      5;
[4]   24,     50,    70,     50,    15;
[5]  120,    274,   450,    425,   225,     52;
[6]  720,   1764,  3248,   3675,  2625,   1092,  203;
[7] 5040,  13068, 26264,  33845, 29400,  16744, 5684, 877;
		

Crossrefs

Cf. A002720 (row sums), A000166 (alternating row sums), A000110 (main diagonal), A000142 (column 0).

Programs

  • Maple
    T := (n, k) -> (-1)^(n-k)*combinat:-bell(k)*Stirling1(n+1, k+1):
    seq(seq(T(n, k), k = 0..n), n = 0..8);
  • Python
    from functools import cache
    @cache
    def b(n: int, k=0):
        return int(n < 1) or k * b(n - 1, k) + b(n - 1, k + 1)
    @cache
    def s(n: int) -> list[int]:
        if n == 0: return [1]
        row = [0] + s(n - 1)
        for k in range(1, n): row[k] = row[k] + (n - 1) * row[k + 1]
        return row
    def A355266_row(n):
        return [s * b(k - 1) for k, s in enumerate(s(n + 1))][1:]
    for n in range(9): print(A355266_row(n))

Formula

T(n, k) = A000110(k) * A130534(n, k).
Sum_{k=0..n} T(n, k) = n!*Laguerre(n, -1) = A002720(n).
Sum_{k=0..n} (-1)^k*T(n, k) = !n = n!*A053557(n)/A053556(n) = A000166(n).
Previous Showing 11-12 of 12 results.