A106568 Expansion of 4*x/(1 - 4*x - 4*x^2).
0, 4, 16, 80, 384, 1856, 8960, 43264, 208896, 1008640, 4870144, 23515136, 113541120, 548225024, 2647064576, 12781158400, 61712891904, 297976201216, 1438756372480, 6946930294784, 33542746669056, 161958707855360, 782005818097664, 3775858103812096, 18231455687639040
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (4,4).
Crossrefs
Programs
-
Magma
[n le 2 select 4*(n-1) else 4*(Self(n-1) +Self(n-2)): n in [1..41]]; // G. C. Greubel, Sep 06 2021
-
Maple
A106568 := n -> ifelse(n=0, 0, 4^(n)*hypergeom([(1-n)/2, 1-n/2], [1-n], -1)): seq(simplify(A106568(n)), n = 0..24); # Peter Luschny, Mar 30 2025
-
Mathematica
LinearRecurrence[{4,4}, {0,4}, 40] (* G. C. Greubel, Sep 06 2021 *)
-
Sage
[2^(n+1)*lucas_number1(n,2,-1) for n in (0..40)] # G. C. Greubel, Sep 06 2021
Formula
a(n) = 4 * A057087(n).
a(n) = A094013(n+1). - R. J. Mathar, Aug 24 2008
From Philippe Deléham, Sep 19 2009: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) for n > 2; a(0) = 0, a(1)=4.
G.f.: 4*x/(1 - 4*x - 4*x^2). (End)
G.f.: Q(0) - 1, where Q(k) = 1 + 2*(1+2*x)*x + 2*(2*k+3)*x - 2*x*(2*k+1 +2*x+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2013
a(n) = 2^(n+1)*A000129(n). - G. C. Greubel, Sep 06 2021
a(n) = 4^n*hypergeom([(1-n)/2, 1-n/2], [1-n], -1) for n > 0. - Peter Luschny, Mar 30 2025
Extensions
Edited by N. J. A. Sloane, Apr 30 2006
Simpler name using o.g.f. by Joerg Arndt, Oct 05 2013
Comments