cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A106568 Expansion of 4*x/(1 - 4*x - 4*x^2).

Original entry on oeis.org

0, 4, 16, 80, 384, 1856, 8960, 43264, 208896, 1008640, 4870144, 23515136, 113541120, 548225024, 2647064576, 12781158400, 61712891904, 297976201216, 1438756372480, 6946930294784, 33542746669056, 161958707855360, 782005818097664, 3775858103812096, 18231455687639040
Offset: 0

Views

Author

Roger L. Bagula, May 30 2005

Keywords

Comments

This sequence is part of a class of sequences with the properties: a(n) = m*(a(n-1) + a(n-2)) with a(0) = 0 and a(1) = m, g.f.: m*x/(1 - m*x - m*x^2), and have the Binet form m*(alpha^n - beta^n)/(alpha - beta) where 2*alpha = m + sqrt(m^2 + 4*m) and 2*beta = p - sqrt(m^2 + 4*m). - G. C. Greubel, Sep 06 2021

Crossrefs

Sequences of the form a(n) = m*(a(n-1) + a(n-2)): A000045 (m=1), A028860 (m=2), A106435 (m=3), A094013 (m=4), A106565 (m=5), A221461 (m=6), A221462 (m=7).

Programs

  • Magma
    [n le 2 select 4*(n-1) else 4*(Self(n-1) +Self(n-2)): n in [1..41]]; // G. C. Greubel, Sep 06 2021
    
  • Maple
    A106568 := n -> ifelse(n=0, 0, 4^(n)*hypergeom([(1-n)/2, 1-n/2], [1-n], -1)):
    seq(simplify(A106568(n)), n = 0..24);  # Peter Luschny, Mar 30 2025
  • Mathematica
    LinearRecurrence[{4,4}, {0,4}, 40] (* G. C. Greubel, Sep 06 2021 *)
  • Sage
    [2^(n+1)*lucas_number1(n,2,-1) for n in (0..40)] # G. C. Greubel, Sep 06 2021

Formula

a(n) = 4 * A057087(n).
a(n) = A094013(n+1). - R. J. Mathar, Aug 24 2008
From Philippe Deléham, Sep 19 2009: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) for n > 2; a(0) = 0, a(1)=4.
G.f.: 4*x/(1 - 4*x - 4*x^2). (End)
G.f.: Q(0) - 1, where Q(k) = 1 + 2*(1+2*x)*x + 2*(2*k+3)*x - 2*x*(2*k+1 +2*x+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2013
a(n) = 2^(n+1)*A000129(n). - G. C. Greubel, Sep 06 2021
a(n) = 4^n*hypergeom([(1-n)/2, 1-n/2], [1-n], -1) for n > 0. - Peter Luschny, Mar 30 2025

Extensions

Edited by N. J. A. Sloane, Apr 30 2006
Simpler name using o.g.f. by Joerg Arndt, Oct 05 2013
Previous Showing 11-11 of 11 results.