cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A367824 Array read by ascending antidiagonals: A(n, k) is the numerator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.

Original entry on oeis.org

1, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 1, 0, -1, -1, 1, 3, 1, -1, -3, -1, 1, 2, 1, 0, -1, -2, -1, 1, 5, 3, 1, -1, -3, -5, -1, 1, 3, 1, 1, 0, -1, -1, -3, -1, 1, 7, 5, 1, 1, -1, -1, -5, -7, -1, 1, 4, 3, 2, 1, 0, -1, -2, -3, -4, -1, 1, 0, 7, 5, 3, 1, -1, -3, -5, -7, -9, -1
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2023

Keywords

Comments

This array generalizes A367727.

Examples

			The array of the fractions begins:
  1,  -1,   -1,   -1,   -1,   -1,    -1,    -1, ...
  1,   0, -1/3, -1/2, -3/5, -2/3,  -5/7,  -3/4, ...
  1, 1/3,    0, -1/5, -1/3, -3/7,  -1/2,  -5/9, ...
  1, 1/2,  1/5,    0, -1/7, -1/4,  -1/3,  -2/5, ...
  1, 3/5,  1/3,  1/7,    0, -1/9,  -1/5, -3/11, ...
  1, 2/3,  3/7,  1/4,  1/9,    0, -1/11,  -1/6, ...
  1, 5/7,  1/2,  1/3,  1/5, 1/11,     0, -1/13, ...
  1, 3/4,  5/9,  2/5, 3/11,  1/6,  1/13,     0, ...
  ...
The array of the numerators begins:
  1, -1, -1, -1, -1, -1, -1, -1, ...
  1,  0, -1, -1, -3, -2, -5, -3, ...
  1,  1,  0, -1, -1, -3, -1, -5, ...
  1,  1,  1,  0, -1, -1, -1, -2, ...
  1,  3,  1,  1,  0, -1, -1, -3, ...
  1,  2,  3,  1,  1,  0, -1, -1, ...
  1,  5,  1,  1,  1,  1,  0, -1, ...
  1,  3,  5,  2,  3,  1,  1,  0, ...
  ...
		

Crossrefs

Cf. A367825 (denominator), A367826 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=1; A[n_,k_]:=Numerator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

A(1, n) = -A026741(n-1) for n > 0.
A(2, n) = -A060819(n-2) for n > 2.
A(3, n) = -A060789(n-3) for n > 3.
A(4, n) = -A106609(n-4) for n > 3.
A(5, n) = -A106611(n-5) for n > 4.
A(6, n) = -A051724(n-6) for n > 5.
A(7, n) = -A106615(n-7) for n > 6.
A(8, n) = -A106617(n-8) = A231190(n) for n > 7.
A(9, n) = -A106619(n-9) for n > 8.
A(10, n) = -A106612(n-10) for n > 9.

A367825 Array read by ascending antidiagonals: A(n, k) is the denominator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 1, 2, 1, 1, 5, 5, 5, 5, 1, 1, 3, 3, 1, 3, 3, 1, 1, 7, 7, 7, 7, 7, 7, 1, 1, 4, 2, 4, 1, 4, 2, 4, 1, 1, 9, 9, 3, 9, 9, 3, 9, 9, 1, 10, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 4, 6, 12, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2023

Keywords

Comments

This array generalizes A367728.

Examples

			The array of the fractions begins:
  1,  -1,   -1,   -1,   -1,   -1,    -1,    -1, ...
  1,   0, -1/3, -1/2, -3/5, -2/3,  -5/7,  -3/4, ...
  1, 1/3,    0, -1/5, -1/3, -3/7,  -1/2,  -5/9, ...
  1, 1/2,  1/5,    0, -1/7, -1/4,  -1/3,  -2/5, ...
  1, 3/5,  1/3,  1/7,    0, -1/9,  -1/5, -3/11, ...
  1, 2/3,  3/7,  1/4,  1/9,    0, -1/11,  -1/6, ...
  1, 5/7,  1/2,  1/3,  1/5, 1/11,     0, -1/13, ...
  1, 3/4,  5/9,  2/5, 3/11,  1/6,  1/13,     0, ...
  ...
The array of the denominators begins:
  1, 1, 1, 1,  1,  1,  1,  1, ...
  1, 1, 3, 2,  5,  3,  7,  4, ...
  1, 3, 1, 5,  3,  7,  2,  9, ...
  1, 2, 5, 1,  7,  4,  3,  5, ...
  1, 5, 3, 7,  1,  9,  5, 11, ...
  1, 3, 7, 4,  9,  1, 11,  6, ...
  1, 7, 2, 3,  5, 11,  1, 13, ...
  1, 4, 9, 5, 11,  6, 13,  1, ...
  ...
		

Crossrefs

Cf. A367824 (numerator), A367827 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=1; A[n_,k_]:=Denominator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k,k],{n,0,12},{k,0,n}]//Flatten

Formula

A(1, n) = A026741(n+1).
A(2, n) = A060819(n+2).
A(3, n) = A060789(n+3).
A(4, n) = A106609(n+4).
A(5, n) = A106611(n+5).
A(6, n) = A051724(n+6).
A(7, n) = A106615(n+7).
A(8, n) = A106617(n+8) = A231190(n+16).
A(9, n) = A106619(n+9).
A(10, n) = A106612(n+10).

A231189 Coefficients of the algebraic number 2*sin(2*Pi/n) in the power basis of Q(2*cos(Pi/q(n))), with q(n) = A225975(n), n >= 1.

Original entry on oeis.org

0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 1, 0, -3, 0, 1, 0, 0, 0, 1, 0, 5, 0, -5, 0, 1, 0, -3, 0, 1, 0, -7, 0, 14, 0, -7, 0, 1, 0, 0, 1, 0, 9, 0, -30, 0, 27, 0, -9, 0, 1, 0, 0, 0, 5, 0, -5, 0, 1, 0, -7, 0, 22, 0, -13, 0, 2, 0, -3, 0, 1, 0, 13, 0, -91, 0, 182, 0, -156, 0, 65, 0, -13, 0, 1, 0, 0, 0, -4, 0, 5, 0, -1, 0, -15, 0, 140, 0, -378, 0, 450, 0, -275, 0, 90, 0, -15, 0, 1, 0, 0, -1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Dec 04 2013

Keywords

Comments

The relevant trigonometric identity (used in the D. H. Lehmer and I. Niven references, given in A181871) is 2*sin(2*Pi/n) = 2*cos(2*Pi*(1/n -1/4)) = 2*cos(Pi*abs(n-4)/(2*n)) = 2*cos(Pi*p(n)/q(n)), with gcd(p(n), q(n)) = 1 (fraction p(n)/q(n) in lowest terms). One finds p(n) = A106609(n-4), n >=4, with p(1) = 3 , p(2) = 1 = p(3), and q(n) = A225975(n), n >= 1. See the comments on these two A-numbers. Therefore, 2*sin(2*Pi/n) = R(p(n), rho(q(n))), with rho(k) = 2*cos(Pi/k), and the R-polynomials (monic version of Chebyshev's T-polynomials) are given in A127672. It may happen that p(n), the degree of R, is >= delta(q(n)), the degree of the algebraic number rho(q(n)). Here delta(k) = A055034(k) is the degree of the minimal polynomial C(k, x) of rho(k) found under A187360. In this case one can reduce all rho(q(n)) powers >= delta(q(n)) with the help of the equation C(q(n), rho(q(n))) = 0. Thus the final result is 2*sin(2*Pi/n) = R(p(n), x) (mod C(q(n), x)) with x = rho(q(n)). Because R is an integer polynomial this shows that 2*sin(2*Pi/n) is an integer in the algebraic number field Q(rho(q(n))) of degree delta(q(n)).
The power basis of Q(rho(q(n))) is <1, rho(q(n)), ..., rho(q(n))^(delta(q(n))-1)>. Therefore the length of row n of this table is delta(q(n)).
The values n for which mod C(q(n), x) is in operation for the given formula for 2*sin(2*Pi/n) are those for which delta(q(n)) - p(n) <= 0, that is n = 1, 2, 12, 15, 18, 20, 21, 24, 25, 27, 28, 30,...
For the minimal polynomials of 2*sin(2*Pi/n) see the coefficient table A231188.

Examples

			[0], [0], [0, 1], [2], [0, 1, 0, 0], [0, 1], [0, -3, 0, 1, 0, 0], [0, 1], [0, 5, 0, -5, 0, 1], ...
The table a(n,m) begins (the trailing zeros are needed to have the correct degree for Q(rho(q(n)))):
n\m  0   1  2   3  4    5  6    7  8    9  10  11 12  13 14 15 16 17 ...
1:   0
2:   0
3:   0   1
4:   2
5:   0   1  0   0
6:   0   1
7:   0  -3  0   1  0    0
8:   0   1
9:   0   5  0  -5  0    1
10:  0  -3  0   1
11:  0  -7  0  14  0   -7  0    1  0    0
12:  1
13:  0   9  0 -30  0   27  0   -9  0    1   0   0
14:  0   5  0  -5  0    1
15:  0  -7  0  22  0  -13  0    2
16:  0  -3  0   1
17:  0  13  0 -91  0  182  0 -156  0   65   0 -13  0   1  0  0
18:  0  -4  0   5  0   -1
19:  0 -15  0 140  0 -378  0  450  0 -275   0  90  0 -15  0  1  0  0
20: -1   1
...
--------------------------------------------------------------------------
n=1:  2*sin(2*Pi/1) = 0. rho(q(1)) = rho(2) = 2*cos(Pi/2) = 0 and p(1) = 3. R(3, x) = -3*x + x^3 and C(2, x) = x. Therefore R(3, x) (mod C(2, x)) = 0. The degree of C(2, x) is delta(2) = A055034(2) = 1. Here one should use 1 for the undefined  rho(q(1))^0 in order to obtain a(1, 0) = 0.
n=2: 2*sin(2*Pi/2) = 0; rho(q(2)) = rho(2) =  0; p(2) = 1,  R(1, x) = x , C(2, x) = x and delta(2) = 1.  Therefore   R(1, x)  (mod C(1, x)) = 0.   Again, rho(2)^0 is put to 1 here, and a(2, 0) = 0.
n=5: 2*sin(2*Pi/5) = R(1, rho(10)) (mod C(10, rho(10)) =1* rho(10) (the degree of C(10,x) is delta(10) = 4, therefore the mod prescription is not needed).  Therefore, a(5, 0) =0, a(5,1) =1, a(n, m) = 0 for m=2, 3.
n =11: 2*sin(2*Pi/11) = R(7, x) (mod(C(22, x)) with x = rho(22), because p(11) = 7 and q(11) = 22. The degree of C(22, x) is delta(22) = 10, therefore the mod restriction is not needed and R(7, x) = -7*x + 14*x^3 - 7*x^5 + x^7. The coefficients produce the row [0, -7, 0, 14,  0,  -7, 0, 1, 0, 0] with the two trailing zeros needed to obtain the correct row length, namely delta(q(11)) = 10.
		

Crossrefs

Cf. A055034 (for delta), A106609 (for p), A225975 (for q), A127672 (for R), A187360 (for C), A181871, A231188.

Formula

a(n,m) = [x^m] (R(p(n), x) (mod C(q(n), x)), n >= 1, m = 0, 1, ..., delta(q(n)) - 1, where the R and C polynomials are found in A187360 and A127672, respectively. p(n) = A106609(n-4), n >=4, with p(1) = 3 , p(2) = 1 = p(3), and q(n) = A225975(n). Powers of x = rho(q(n)) = 2*cos(Pi/q(n)) appear in the table in increasing order.
Previous Showing 11-13 of 13 results.