cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A139508 Primes of the form x^2 + 28x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

61, 181, 601, 829, 1069, 1249, 1381, 1429, 1609, 1621, 1741, 2029, 2089, 2161, 2341, 2389, 2521, 3121, 3169, 3181, 3301, 3709, 3769, 4021, 4261, 4549, 4729, 4801, 4861, 4969, 5209, 5281, 5521, 5581, 5641, 5749, 5821, 6301, 6361, 6421, 6529, 6709, 6829
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

In base 12, the sequence is 51, 131, 421, 591, 751, 881, 971, 9E1, E21, E31, 1011, 1211, 1261, 1301, 1431, 1471, 1561, 1981, 1X01, 1X11, 1XE1, 2191, 2221, 23E1, 2571, 2771, 28X1, 2941, 2991, 2X61, 3021, 3081, 3241, 3291, 3321, 33E1, 3451, 3791, 3821, 3871, 3941, 3X71, 3E51, where X is 10 and E is 11. Moreover, the discriminant is 550. - Walter Kehowski, Jun 01 2008

Crossrefs

Programs

  • Mathematica
    a = {}; w = 28; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139509 Primes of the form x^2 + 29x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

31, 97, 211, 373, 547, 607, 661, 769, 877, 1051, 1087, 1123, 1249, 1279, 1303, 1423, 1597, 1657, 1663, 1693, 1741, 1777, 1861, 1867, 2143, 2179, 2251, 2341, 2467, 2539, 2791, 2857, 3229, 3259, 3319, 3331, 3373, 3511, 3541, 3643, 3697, 3769, 3823, 3877
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 29; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139510 Primes of the form x^2 + 30x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

137, 193, 401, 617, 641, 953, 1009, 1129, 1289, 1297, 1801, 1913, 2129, 2137, 2377, 2473, 2657, 2713, 2801, 3049, 3257, 3313, 3329, 3593, 3889, 4001, 4057, 4153, 4201, 4337, 4649, 4657, 4729, 4817, 4937, 4993, 5009, 5153, 5209, 5441, 5657, 5849, 5881
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 30; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139511 Primes of the form x^2 + 31x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

67, 103, 181, 199, 223, 313, 397, 463, 487, 499, 631, 643, 661, 691, 709, 883, 991, 1021, 1039, 1093, 1153, 1213, 1321, 1483, 1543, 1567, 1741, 1747, 1753, 1831, 1879, 2017, 2029, 2083, 2113, 2137, 2179, 2203, 2269, 2311, 2377, 2539, 2557, 2677, 2731
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 31; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139527 Numbers n such that numbers 24n+5 are primes.

Original entry on oeis.org

0, 1, 2, 4, 6, 7, 8, 11, 12, 13, 16, 19, 21, 23, 27, 28, 29, 32, 33, 34, 39, 42, 44, 46, 49, 51, 53, 54, 57, 62, 67, 68, 71, 72, 78, 79, 81, 82, 83, 86, 89, 92, 93, 96, 97, 98, 99, 103, 106, 109, 112, 114, 116, 118, 119, 121, 123, 134, 141, 142, 144, 147, 148, 149, 153, 154
Offset: 1

Views

Author

Artur Jasinski, Apr 25 2008

Keywords

Comments

Numbers n such that:
24n+1 is prime see A111174, primes 24n+1 see A107008
24n+5 is prime see A139527, primes 24n+5 see A107003
24n+7 is prime see A139483, primes 24n+7 see A107006
24n+11 is prime A139528, primes 24n+11 see A107007
24n+13 is prime see A139529, primes 24n+13 see A139530
24n+17 is prime see A139531, primes 24n+17 see A107181
24n+19 is prime see A139532, primes 24n+19 see A141373
24n+23 is prime see A131210, primes 24n+23 see A134517

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[24 n + 5], AppendTo[a, n]], {n, 0, 200}]; a
    Select[Table[(Prime[n]-5)/24,{n,800}],IntegerQ] (* Harvey P. Dale, Feb 25 2016 *)
Previous Showing 31-35 of 35 results.