cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A371428 Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 - x^2) ).

Original entry on oeis.org

1, 3, 11, 46, 209, 1003, 5002, 25665, 134605, 718371, 3888633, 21298962, 117823660, 657344600, 3694378463, 20896495211, 118865999117, 679545095167, 3902327585407, 22499738052954, 130200110475407, 755927955655813, 4402088019958400, 25706104810367515
Offset: 0

Views

Author

Seiichi Manyama, Mar 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1/(n+1) Sum[(-1)^k Binomial[n+1,k]Binomial[3n-3k+3,n-2k],{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, Sep 25 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3-x^2))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(3*n-3*k+3, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(3*n-3*k+3,n-2*k).

A371429 Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 - x^4) ).

Original entry on oeis.org

1, 3, 12, 55, 272, 1413, 7599, 41933, 236053, 1350093, 7822620, 45817390, 270815730, 1613300978, 9676131942, 58380176644, 354081959367, 2157570900137, 13201923181308, 81084900544971, 499711105642851, 3089163236655363, 19150916212748940, 119031956868317285
Offset: 0

Views

Author

Seiichi Manyama, Mar 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3-x^4))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, (-1)^k*binomial(n+1, k)*binomial(3*n-3*k+3, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} (-1)^k * binomial(n+1,k) * binomial(3*n-3*k+3,n-4*k).
Previous Showing 11-12 of 12 results.