cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A301831 G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 + x^k*A(x)^k)^k.

Original entry on oeis.org

1, -1, 0, 0, 6, -16, 16, -34, 217, -681, 1343, -3466, 13370, -42380, 109477, -312448, 1040248, -3267138, 9447529, -28367596, 90504001, -283611105, 861087913, -2654231074, 8386506600, -26359974392, 81902319183, -256179313766, 809890745232, -2557697524240, 8046530976599
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2018

Keywords

Examples

			G.f. A(x) = 1 - x + 6*x^4 - 16*x^5 + 16*x^6 - 34*x^7 + 217*x^8 - 681*x^9 + 1343*x^10 - 3466*x^11 + ...
log(A(x)) = -x - x^2/2 - x^3/3 + 23*x^4/4 - 51*x^5/5 + 35*x^6/6 - 197*x^7/7 + ... + A281266(n)*x^n/n + ...
		

Crossrefs

Formula

G.f. satisfies: A(x) = exp(Sum_{k>=1} (-1)^k*x^k*A(x)^k/(k*(1 - x^k*A(x)^k)^2)).
a(n) = [x^n] (Sum_{k>=0} A255528(k)*x^k)^(n+1)/(n + 1).

A384829 G.f. satisfies A(x) = Sum_{n>=0} x^(n*(n+1)/2) * A(x)^(n*(n+1)).

Original entry on oeis.org

1, 1, 2, 6, 22, 87, 359, 1535, 6758, 30431, 139442, 648001, 3046730, 14467286, 69281190, 334211603, 1622568398, 7921905397, 38871120255, 191586353683, 948083155952, 4708743978840, 23463673225988, 117271827518778, 587744334759630, 2953138645722287, 14872864243128300, 75066312240321173
Offset: 0

Views

Author

Paul D. Hanna, Jun 13 2025

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 87*x^5 + 359*x^6 + 1535*x^7 + 6758*x^8 + 30431*x^9 + 139442*x^10 + 648001*x^11 + 3046730*x^12 + ...
where A(x) = 1 + x*A(x)^2 + x^3*A(x)^6 + x^6*A(x)^12 + x^10*A(x)^20 + x^15*A(x)^30 + ... + x^(n*(n+1)/2) * A(x)^(n*(n+1)) + ...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constants {d,c}: *) {1/r, 2*(s/Sqrt[Pi*(-5 + 8*r^(7/8)*s^(3/4) * Derivative[0, 0, 2][EllipticTheta][2, 0, Sqrt[r]*s])])} /. FindRoot[{2*r^(1/8)*s^(5/4) == EllipticTheta[2, 0, Sqrt[r]*s], 5*s^(1/4) == 2*r^(3/8) * Derivative[0, 0, 1][EllipticTheta][2, 0, Sqrt[r]*s]}, {r, 1/4}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jun 13 2025 *)
  • PARI
    {a(n) = my(A = sqrt( (1/x) * serreverse( x*eta(x +x^2*O(x^n))^2/eta(x^2 +x^2*O(x^n))^4 ) ) ); polcoef(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * A(x)^(n*(n+1)).
(2) A(x) = sqrt( (1/x) * Series_Reversion( x*eta(x)^2/eta(x^2)^4 ) ), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor.
(3) A(x) = Product_{n>=1} (1 + (x*A(x)^2)^n) * (1 - (x*A(x)^2)^(2*n)).
(4) A(x) = exp( Sum_{n>=1} ( (x*A(x)^2)^n / (1 + (x*A(x)^2)^n) )/n ).
(5) A(x)^4 = Sum_{n>=0} (2*n+1) * (x*A(x)^2)^n / (1 - (x*A(x)^2)^(2*n+1)).
(6) A(x^2)^2 = Sum_{n>=0} (x*A(x^2))^n / (1 + (x*A(x^2))^(2*n+1)).
a(n) ~ c * d^n / n^(3/2), where d = 5.33733388876021052204016376282654316742329168165380444126... and c = 0.24712373554952847890961627688964866920906379264976188659... - Vaclav Kotesovec, Jun 13 2025
Previous Showing 21-22 of 22 results.