cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A112283 Consider the array T(n, m) where the n-th row is the sequence of integer coefficients of A(x), where 1<=a(n)<=n, such that A(x)^(1/n) consists entirely of integer coefficients and where m is the (m+1)-th coefficient. This sequence is the first occurrence of 1 after the first column.

Original entry on oeis.org

1, 2, 3, 8, 5, 72, 7, 24, 9, 130, 11, 264, 13, 168, 210, 304, 17, 162, 19, 540, 378, 682, 23, 456, 25, 1274, 27, 336, 29, 1770, 31, 544, 2013, 918, 525, 504, 37, 3724, 234, 280, 41, 504, 43, 4180, 2025, 414, 47, 816, 49, 1300, 3723, 1196, 53, 972, 550, 1960, 3933, 986, 59, 6480, 61, 1798, 4095, 1792, 3055
Offset: 1

Views

Author

Keywords

Comments

The degree >0 of the polynomial above whose coefficient is 1.

Examples

			Only the pertinent part of the 'Table' in A109626.
{1, 1},
{1, 2, 1},
{1, 3, 3, 1},
{1, 4, 2, 4, 3, 4, 4, 4, 1},
{1, 5, 5, 5, 5, 1},
{1, 6, 3, 2, 3, 6, 6, 6, 3, 4, 6, 6, 6, 6, ..., },
{1, 7, 7, 7, 7, 7, 7, 1},
{1, 8, 4, 8, 2, 8, 4, 8, 7, 8, 8, 8, 4, 8, 8, 8, 3, 8, 8, 8, 2, 8, 8, 8, 1},
{1, 9, 9, 3, 9, 9, 3, 9, 9, 1},
{1, 10, 5, 10, 10, 2, 5, 10, 10, 10, 3, 10, 5, 10, ..., },
{1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1},
{1, 12, 6, 4, 9, 12, 4, 12, 12, 8, 6, 12, 6, 12, ..., },
{1, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 1}, ...,.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{j = 1, a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; While[a[j] != 1, j++ ]; j]; Table[ f[n], {n, 10}]

Formula

Conjecture: a(n)=n if n is 1, a prime or the square of the odd primes.

Extensions

a(30)-a(50) from Robert G. Wilson v, Oct 29 2007
a(51)-a(65) from Robert G. Wilson v, Jul 25 2008

A111617 Where A111616(n)=2.

Original entry on oeis.org

6, 10, 18, 20, 22, 30, 34, 36, 38, 44, 50, 52, 56, 58, 62, 72, 78, 84, 86, 90, 92, 96, 98, 100, 102, 104, 110, 116, 134
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j, 0, 144}]]; g[n_, m_] := f[n][[m]]; Select[ Range[141], # / g[ #, # + 3] == 2 &]

A111621 n divided by the first lower diagonal of the array in A111618.

Original entry on oeis.org

2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j, 0, 128}]]; g[n_, m_] := f[n][[m]]; Table[ n / g[n, n - 1], {n, 2, 106}]

A112284 A112283/n.

Original entry on oeis.org

1, 1, 1, 2, 1, 12, 1, 3, 1, 13, 1, 22, 1, 12, 14, 19, 1, 9, 1, 27, 18, 31, 1, 19, 1, 49, 1, 12, 1, 59, 1, 17, 61, 27, 15, 14, 1, 98, 6, 7, 1, 12, 1, 95, 45, 9, 1, 17, 1, 26, 73, 23, 1, 18, 10, 35, 69, 17, 1, 108, 1, 29, 65, 28, 47
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{j = 1, a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; While[a[j] != 1, j++ ]; j]; Table[ f[n]/n, {n, 10}]

Formula

Conjecture: a(n)=1 iff n is 1, a prime or the square of an odd prime.

Extensions

a(30)-a(50) from Robert G. Wilson v, Oct 29 2007
a(51)-a(65) from Robert G. Wilson v, Jul 25 2008

A111622 Where A111621(n)=2.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 21, 23, 27, 31, 33, 35, 39, 43, 53, 57, 59, 61, 63, 67, 79, 95, 97, 101, 115, 127, 129, 131, 135, 137, 139, 143
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j, 0, 144}]]; g[n_, m_] := f[n][[m]]; t = Table[ n/g[n, n - 1], {n, 2, 144}]; Select[ Range[143], t[[ # ]] == 2 &]
Previous Showing 21-25 of 25 results.