cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A109736 Where n appears in A109890.

Original entry on oeis.org

1, 2, 3, 5, 9, 4, 23, 6, 8, 10, 40, 7, 22, 30, 11, 15, 67, 19, 49, 13, 38, 42, 43, 14, 12, 56, 21, 46, 48, 18, 58, 16, 41, 68, 37, 20, 89, 57, 60, 55, 76, 63, 151, 78, 107, 96, 98, 17, 61, 65, 69, 71, 24, 103, 87, 64, 80, 74, 44, 83, 59, 92, 101, 94, 72, 91, 185, 142, 104, 45
Offset: 1

Views

Author

N. J. A. Sloane and Nadia Heninger, Aug 11 2005

Keywords

Comments

a(10^n): 1, 10, 128, 1430, ... - Robert G. Wilson v, Aug 12 2005
a(n) = A094341(n) for 3 <= n <= 70. - Georg Fischer, Nov 02 2018
According to the remarks in A109890, A094339 and A109890 are essentially the same, just swapping the first 2 terms, so this here is a(n)=A094341(n) for n>=3. - R. J. Mathar, Jul 02 2025

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a109736 = (+ 1) . fromJust . (`elemIndex` a109890_list)
    -- Reinhard Zumkeller, Jan 01 2015
  • Mathematica
    a[1] = 1; a[2] = 2; a[n_] := a[n] = Block[{t = Table[a[i], {i, n - 1}]}, s = Plus @@ t; d = Divisors[s]; l = Complement[d, t]; If[l != {}, k = First[l], k = s; While[Position[t, k] == {}, k += s]; k]]; t = Table[a[n], {n, 250}]; Table[k = 1; While[ t[[k]] != n, k++ ]; k, {n, 70}] (* Robert G. Wilson v, Aug 12 2005 *)

Extensions

More terms from Robert G. Wilson v, Aug 12 2005

A111242 Records in A109890.

Original entry on oeis.org

1, 2, 3, 6, 8, 12, 15, 25, 32, 48, 53, 106, 265, 318, 321, 428, 642, 2563, 5713, 15019, 113573, 230801, 306127, 941071, 1016963, 5166859, 9536294, 30956561, 123081011, 265811669, 1016775247, 3050325741, 4354364461, 14086296281, 60060345973
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[2] = 2; a[n_] := a[n] = Block[{t = Table[a[i], {i, n - 1}]}, s = Plus @@ t; d = Divisors[s]; l = Complement[d, t]; If[l != {}, k = First[l], k = s; While[Position[t, k] == {}, k += s]; k]]; b = 0; t = {}; Do[If[a[n] > b, b = a[n]; AppendTo[t, b]], {n, 2500}]; t (Robert G. Wilson v)

Extensions

More terms from Robert G. Wilson v, Nov 03 2005

A111243 Where records appear in A109890.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 11, 12, 16, 17, 24, 25, 26, 28, 32, 34, 35, 52, 116, 154, 222, 232, 256, 279, 504, 568, 598, 634, 844, 909, 1306, 1307, 1505, 1704, 2016, 2050, 2164, 2325, 2497, 2533, 2630, 2631, 2701, 3130, 3225, 3322, 3411, 3524, 3785, 4243, 4244, 4245
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2005

Keywords

Crossrefs

Extensions

More terms from David Wasserman, Jan 07 2009

A372111 Partial sums of A124652.

Original entry on oeis.org

1, 3, 6, 10, 15, 24, 30, 38, 54, 66, 77, 84, 98, 126, 144, 168, 189, 216, 248, 279, 360, 370, 390, 403, 572, 594, 627, 646, 663, 702, 728, 777, 814, 858, 894, 942, 996, 1060, 1085, 1120, 1160, 1189, 1230, 1245, 1290, 1320, 1370, 1450, 1508, 1560, 1620, 1692, 1739
Offset: 1

Views

Author

Michael De Vlieger, Apr 25 2024

Keywords

Comments

Analogous to A109735 with respect to A109890.
A007947(A124652(n+1)) | a(n) for n > 2.

Examples

			See A124652.
		

Crossrefs

Programs

  • Mathematica
    nn = 54; c[_] := False; a[1] = 1; a[2] = 2; s = u = 3; c[1] = c[2] = True;
    f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
    {1}~Join~Reap[Do[Sow[s]; k = u; While[Or[Mod[s, f[k]] != 0, c[k]], k++];
        Set[{a[n], c[k]}, {k, True}];
        s += k; If[k == u, While[c[u], u++]], {n, 3, nn}] ][[-1, 1]]

A253444 Lengths of runs of identical terms in A253443.

Original entry on oeis.org

2, 4, 14, 17, 27, 1, 21, 62, 34, 86, 86, 47, 186, 94, 53, 212, 226, 148, 251, 696, 1484, 630, 1870, 563, 813, 188, 1222, 154, 960, 6654, 1980, 8872, 10027, 3628, 5724, 6330, 12059, 10418, 10169, 4192, 4868
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 01 2015

Keywords

Comments

A253584(n) occurs exactly a(n) times in A253443.

Crossrefs

Programs

  • Haskell
    import Data.List (group)
    a253444 n = a253444_list !! (n-1)
    a253444_list = map length $ group a253443_list
  • Mathematica
    nn = 2^14; c[_] := False;
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; u = s = a[1] + a[2];
    Differences@ Reap[Monitor[Do[k = SelectFirst[Divisors[s], ! c[#] &];
      c[k] = True; s += k;
    If[k == u, Sow[n]; While[c[u], u++]], {n, 3, nn}], n] ][[-1, 1]] (* Michael De Vlieger, Apr 27 2024 *)

Extensions

More terms from Michael De Vlieger, Apr 27 2024

A253584 Distinct terms in A253443.

Original entry on oeis.org

4, 5, 7, 11, 17, 34, 37, 43, 67, 73, 127, 141, 157, 173, 227, 283, 347, 359, 401, 409, 607, 857, 1091, 1303, 1823, 1907, 2281, 2437, 2441, 2609, 2969, 3851, 4211, 4691, 6907, 7537, 8429, 10301, 11953, 14081, 14557
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 05 2015

Keywords

Comments

a(n) occurs exactly A253444(n) times in A253443.

Crossrefs

Programs

  • Haskell
    import Data.List (group)
    a253584 n = a253584_list !! (n-1)
    a253584_list = map head $ group a253443_list
  • Mathematica
    nn = 2^14; c[_] := False;
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; u = s = a[1] + a[2];
    Rest@ Reap[Monitor[Do[k = SelectFirst[Divisors[s], ! c[#] &];
      c[k] = True; s += k;
    If[k == u, Sow[u]; While[c[u], u++]], {n, 3, nn}], n]][[-1, 1]] (* Michael De Vlieger, Apr 27 2024 *)

Extensions

More terms from Michael De Vlieger, Apr 27 2024

A372009 Indices k such that A124652(k) is prime.

Original entry on oeis.org

2, 3, 5, 11, 12, 20, 24, 28, 29, 33, 42, 43, 53, 58, 67, 78, 93, 98, 104, 105, 109, 112, 118, 125, 126, 137, 141, 145, 146, 162, 174, 182, 185, 187, 188, 195, 200, 223, 224, 231, 232, 239, 246, 249, 252, 255, 259, 264, 271, 275, 283, 286, 287, 296, 298, 300, 326
Offset: 1

Views

Author

Michael De Vlieger, Apr 29 2024

Keywords

Comments

Analogous to A111238, a sequence which instead pertains to A109890.

Examples

			Let b(x) = A124652(x).
Table of first terms.
   n  a(n)  b(a(n))
  -----------------
   1    2      2
   2    3      3
   3    5      5
   4   11     11
   5   12      7
   6   20     31
   7   24     13
   8   28     19
   9   29     17
  10   33     37
  11   42     29
  12   43     41
  ...
		

Crossrefs

Programs

  • Mathematica
    nn = 300; c[_] := False;
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    f[x_] := Select[Range[x], Divisible[x, rad[#]] &];
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
    {2}~Join~Reap[Do[r = f[s]; k = SelectFirst[r, ! c[#] &];
        If[PrimeQ[k], Sow[i]]; c[k] = True;
        s += k, {i, 3, nn}] ][[-1, 1]]

Formula

Proper subset of A372028.

A372028 Numbers k such that A124652(k) divides A372111(k-1).

Original entry on oeis.org

3, 5, 7, 11, 12, 13, 15, 16, 17, 18, 20, 22, 24, 26, 27, 28, 29, 30, 31, 33, 40, 41, 42, 43, 44, 46, 49, 50, 51, 53, 55, 58, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 78, 79, 80, 92, 93, 95, 98, 101, 102, 103, 104, 105, 107, 109, 111, 112, 115, 116, 117
Offset: 1

Views

Author

Michael De Vlieger, May 05 2024

Keywords

Comments

Contains A372009(m), m > 1.
For k in this sequence, A124652(k) has the same relationship with A372111(k-1) as A109890(i) has with A109735(i-1) for i > 2.

Examples

			Let b(x) = A124652(x) and s(x) = A372111(x), where A372111 contains partial sums of A124652.
a(1) = 3 since b(3) = 3, a divisor of s(2) = 3.
a(2) = 5 since b(5) = 5, a divisor of s(4) = 10.
a(3) = 7 since b(7) = 6, a divisor of s(6) = 24, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 120; c[_] := False;
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    f[x_] := Select[Range[x], Divisible[x, rad[#]] &];
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
    Reap[Do[r = f[s]; k = SelectFirst[r, ! c[#] &];
      If[Divisible[s, k], Sow[i]]; c[k] = True;
      s += k, {i, 3, nn}] ][[-1, 1]]

Formula

A124652(a(n)) is a number in row A372111(a(n)-1) of A027750.

A372284 Primes in the order in which they appear in A124652.

Original entry on oeis.org

2, 3, 5, 11, 7, 31, 13, 19, 17, 37, 29, 41, 47, 59, 23, 97, 53, 829, 71, 149, 101, 167, 79, 151, 43, 103, 157, 113, 139, 109, 137, 197, 353, 89, 277, 293, 269, 229, 73, 61, 571, 83, 191, 691, 251, 179, 127, 257, 193, 173, 239, 163, 331, 613, 617, 311, 67, 523
Offset: 1

Views

Author

Michael De Vlieger, Apr 29 2024

Keywords

Comments

Analogous to A111239, a sequence which instead pertains to A109890.

Examples

			Let b(x) = A372009(x).
Table of first terms:
   n  b(n) a(n)
  -------------
   1    2    2
   2    3    3
   3    5    5
   4   11   11
   5   12    7
   6   20   31
   7   24   13
   8   28   19
   9   29   17
  10   33   37
  11   42   29
  12   43   41
  ...
		

Crossrefs

Programs

  • Mathematica
    nn = 300; c[_] := False;
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    f[x_] := Select[Range[x], Divisible[x, rad[#]] &];
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
    {2}~Join~Reap[Do[r = f[s]; k = SelectFirst[r, ! c[#] &];
        If[PrimeQ[k], Sow[k]]; c[k] = True;
        s += k, {i, 3, nn}] ][[-1, 1]]

A372322 a(n) = A010846(A372111(n)).

Original entry on oeis.org

1, 2, 5, 6, 5, 11, 18, 8, 16, 22, 5, 28, 13, 33, 23, 38, 11, 26, 12, 9, 58, 28, 80, 5, 30, 55, 19, 27, 19, 56, 37, 21, 27, 87, 44, 44, 48, 38, 18, 58, 42, 5, 110, 26, 112, 140, 38, 45, 32, 144, 102, 59, 5, 139, 225, 39, 44, 22, 180, 86, 114, 34, 23, 133, 41, 115
Offset: 1

Views

Author

Michael De Vlieger, May 05 2024

Keywords

Comments

Let r(x) = A010846(x), the number of m <= x such that rad(m) | x, where rad = A007947.
Let row k of A162306 contain { m : rad(m) | k, m <= k }. Thus r(k) is the length of row k of A162306.
a(n) is the length of row A372111(n) of A162306.
Analogous to A371909, which instead regards A109890 and A109735.

Examples

			Let s(x) = A372111(x) and let r(x) = A010846(x).
a(1) = 1 since r(s(1)) = r(1) = 1.
a(2) = 2 since r(s(2)) = r(3) = 2. For prime p, r(p) = card({1, p}) = 2.
a(3) = 5 since r(s(3)) = r(6) = 5. r(6) = card({1, 2, 3, 4, 6}) = 5.
a(4) = 6 since r(s(4)) = r(10) = 6. r(10) = card({1, 2, 4, 5, 8, 10}) = 6.
a(5) = 5 since r(s(5)) = r(15) = 5. r(15) = card({1, 3, 5, 9, 15}) = 5.
a(6) = 11 since r(s(6)) = r(24) = 11. r(24) = card({1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24}) = 11, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 68; c[_] := False;
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    f[x_] := Select[Range[x], Divisible[x, rad[#]] &];
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
    {1}~Join~Reap[Do[r = f[s]; k = SelectFirst[r, ! c[#] &];
      Sow[Length[r]]; c[k] = True;
      s += k, {i, 3, nn}] ][[-1, 1]]
Previous Showing 11-20 of 21 results. Next