A128411
Coefficient array for orthogonal polynomials defined by C(2n,n).
Original entry on oeis.org
1, -2, 1, 4, -8, 2, -8, 36, -24, 4, 16, -128, 160, -64, 8, -32, 400, -800, 560, -160, 16, 64, -1152, 3360, -3584, 1728, -384, 32, -128, 3136, -12544, 18816, -13440, 4928, -896, 64, 256, -8192, 43008, -86016, 84480, -45056, 13312
Offset: 0
Triangle begins
1,
-2, 1,
4, -8, 2,
-8, 36, -24, 4,
16, -128, 160, -64, 8,
-32, 400, -800, 560, -160, 16,
64, -1152, 3360, -3584, 1728, -384, 32
A136321
Triangular sequence of coefficients of a polynomial recursion for C_n and B_n Cartan matrices: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2) p(x,n)=x2-4*x+4-m:m=5;(related sequence: A_n:m=1,G_n,m=3,B_n,C_n,m=2) This triangular sequence is an extension to the Cartan pattern of matrices.
Original entry on oeis.org
1, -2, 1, -1, -4, 1, 4, 6, -6, 1, -7, -4, 17, -8, 1, 10, -5, -32, 32, -10, 1, -13, 24, 42, -88, 51, -12, 1, 16, -56, -28, 186, -180, 74, -14, 1, -19, 104, -42, -312, 495, -316, 101, -16, 1, 22, -171, 216, 396, -1122, 1053, -504, 132, -18, 1, -25, 260, -561, -264, 2145, -2912, 1960, -752, 167, -20, 1
Offset: 1
{1},
{-2, 1},
{-1, -4, 1},
{4, 6, -6, 1},
{-7, -4, 17, -8, 1},
{10, -5, -32, 32, -10, 1},
{-13, 24, 42, -88,51, -12, 1},
{16, -56, -28,186, -180, 74, -14, 1},
{-19, 104, -42, -312, 495, -316, 101, -16, 1},
{22, -171, 216, 396, -1122, 1053, -504, 132, -18, 1},
{-25, 260, -561, -264,2145, -2912, 1960, -752, 167, -20, 1}
-
Clear[p, a] p[x, 0] = 1; p[x, 1] = -2 + x; p[x, 2] = x^2 - 4*x - 1; p[x_, n_] := p[x, n] = (-2 + x)*p[x, n - 1] - p[x, n - 2]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}] Flatten[a]
A136329
Triangular sequence of coefficients of a polynomial recursion for C_n and B_n Cartan matrices: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2) p(x,n)=x2-4*x+4-m:m=4;(related sequence: A_n:m=1,G_n,m=3,B_n,C_n,m=2) This triangular sequence is an extension to the Cartan pattern of matrices.
Original entry on oeis.org
1, -2, 1, 0, -4, 1, 2, 7, -6, 1, -4, -8, 18, -8, 1, 6, 5, -38, 33, -10, 1, -8, 4, 63, -96, 52, -12, 1, 10, -21, -84, 222, -190, 75, -14, 1, -12, 48, 84, -432, 550, -328, 102, -16, 1, 14, -87, -36, 726, -1342, 1131, -518, 133, -18, 1, -16, 140, -99, -1056, 2860, -3276, 2065, -768, 168, -20, 1
Offset: 1
{1},
{-2, 1},
{0, -4, 1},
{2, 7, -6, 1},
{-4, -8, 18, -8, 1},
{6, 5, -38, 33, -10,1},
{-8, 4, 63, -96, 52, -12, 1},
{10, -21, -84, 222, -190, 75, -14, 1},
{-12, 48, 84, -432, 550, -328, 102, -16, 1},
{14, -87, -36, 726, -1342, 1131, -518, 133, -18, 1},
{-16, 140, -99, -1056, 2860, -3276, 2065, -768, 168, -20, 1}
-
Clear[p, a] p[x, 0] = 1; p[x, 1] = -2 + x; p[x, 2] = x^2 - 4*x ; p[x_, n_] := p[x, n] = (-2 + x)*p[x, n - 1] - p[x, n - 2]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}] Flatten[a]
Comments