A158045
Determinant of power series with alternate signs of gamma matrix with determinant 2!.
Original entry on oeis.org
2, 0, 26, 0, 502, 0, 10306, 0, 213902, 0, 4448666, 0, 92558182, 0, 1925894386, 0, 40073418302, 0, 833837682506, 0, 17350295562262, 0, 361020847688866, 0, 7512036585662702, 0, 156308684773943546, 0, 3252434233373292742, 0, 67675884159595889746, 0
Offset: 1
a(1) = Determinant(A) = 2! = 2.
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008.
-
seq(Determinant(sum(A^i*(-1)^(i-1),i=1..n)), n=1..30);
-
vector(100, n, matdet(sum(k=1, n, [1,1,1 ; 1,2,1 ; 1,2,3]^k*(-1)^(k-1)))) \\ Colin Barker, Jul 13 2014
More terms, and offset changed to 1 by
Colin Barker, Jul 13 2014
A158046
Determinant of power series with alternate signs of gamma matrix with determinant 3!.
Original entry on oeis.org
6, -12, 294, -4800, 33006, -868476, 8045022, -133497600, 1840843662, -23069939772, 357884304366, -4506695659200, 65700186820638, -892588899692796, 12240418932523614, -172125321194572800, 2335747604463776238, -32681605781959208508, 448728077274231515214
Offset: 1
a(1) = Determinant(A) = 3! = 6.
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008
-
with(LinearAlgebra):
A:= Matrix([[1, 1, 1, 1], [1, 2, 1, 2], [1, 2, 3, 1], [1, 2, 3, 4]]):
a:= n-> Determinant(add(A^i*(-1)^(i-1), i=1..n)):
seq(a(n), n=1..30);
-
vector(100, n, matdet(sum(k=1, n, [1,1,1,1 ; 1,2,1,2 ; 1,2,3,1 ; 1,2,3,4]^k*(-1)^(k-1)))) \\ Colin Barker, Jul 14 2014
More terms, and offset changed to 1 by
Colin Barker, Jul 14 2014
A158047
Determinant of power series with alternate signs of gamma matrix with determinant 4!.
Original entry on oeis.org
24, 144, 13896, 842400, 36604920, 2333944368, 126441557448, 6680853691200, 387982670513688, 20676854461594320, 1158249535425969384, 63778918790403180000, 3507499386329443453752, 194248225087593045241968
Offset: 0
a(1) = Determinant(A) = 4! = 24.
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008.
A158048
Determinant of power series with alternate signs of gamma matrix with determinant 5!.
Original entry on oeis.org
120, -3120, 1657560, -462870720, 94034430600, -34709926327440, 7736751469771080, -2418878906762872320, 634745166256592831640, -175970074271706846159600, 49274372699370917797432920
Offset: 0
a(1) = Determinant(A) = 5! = 120.
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008.
A158049
Determinant of power series with alternate signs of gamma matrix with determinant 6!.
Original entry on oeis.org
720, 95760, 323885520, 520091041680, 646101191031120, 1426723480107570960, 1908953197598354801040, 3574028285578402656777360, 5645446200753726958758372240, 9359837643523957747903959388560
Offset: 0
a(1) = Determinant(A) = 6! = 720.
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008.
Comments