cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A334974 Infinitary admirable numbers: numbers k such that there is a proper infinitary divisor d of k such that isigma(k) - 2*d = 2*k, where isigma is the sum of infinitary divisors function (A049417).

Original entry on oeis.org

24, 30, 40, 42, 54, 56, 66, 70, 78, 88, 96, 102, 104, 114, 120, 138, 150, 174, 186, 222, 246, 258, 270, 282, 294, 318, 354, 360, 366, 402, 420, 426, 438, 474, 486, 498, 534, 540, 582, 606, 618, 630, 642, 654, 660, 678, 726, 762, 780, 786, 822, 834, 894, 906, 942
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their proper infinitary divisors, with one of them taken with a minus sign.
Admirable numbers (A111592) whose number of divisors is a power of 2 (A036537) are also infinitary admirable numbers, since all of their divisors are infinitary. Terms with number of divisors that is not a power of 2 are 96, 150, 294, 360, 420, 486, 540, 630, 660, 726, 780, 960, 990, ...

Examples

			150 is in the sequence since 150 = 1 + 2 + 3 - 6 + 25 + 50 + 75 is the sum of its proper infinitary divisors with one of them, 6, taken with a minus sign.
		

Crossrefs

The infinitary version of A111592.
Subsequence of A129656.

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infDivQ[n_, 1] = True; infDivQ[n_, d_] := BitAnd[IntegerExponent[n, First /@ (f = FactorInteger[d])], (e = Last /@ f)] == e; infAdmQ[n_] := (ab = isigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && infDivQ[n, ab/2]; Select[Range[1000], infAdmQ]

A329189 3-admirable numbers: 3-abundant numbers (A068403) k such that exists a proper divisor d of k such that sigma(k) - 2*d = 3*k, where sigma(k) is the sum of divisors of k (A000203).

Original entry on oeis.org

180, 240, 360, 420, 504, 540, 600, 780, 1080, 1344, 1872, 1890, 2016, 2184, 2352, 2376, 2688, 3192, 3276, 3744, 4284, 4320, 4680, 5292, 5376, 5796, 6048, 6552, 7128, 7344, 7440, 8190, 9504, 10296, 10416, 13776, 14850, 18600, 19824, 19872, 20496, 21528, 22932
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2019

Keywords

Comments

Analogous to admirable numbers (A111592) as 3-perfect numbers (A005820) are analogous to perfect numbers (A000396).
The proper divisors of each term k can be added to a sum of 2*k with one divisor taken with a minus sign.

Examples

			180 is a term since its proper divisors can be added to 1 + 2 - 3 + 4 + 5 + 6 + 9 + 10 + 12 + 15 + 18 + 20 + 30 + 36 + 45 + 60 + 90 = 360 = 2 * 180, with one divisor, 3, taken with a minus sign.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := (ab = DivisorSigma[1, n] - 3 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2]; Select[Range[23000], aQ]

A109730 Lesser of twin admirable numbers: k such that k and k+2 are both admirable numbers.

Original entry on oeis.org

40, 54, 102, 138, 222, 364, 366, 474, 532, 642, 834, 1036, 1146, 1372, 1504, 1876, 1986, 2994, 3052, 3556, 4396, 4564, 5514, 5572, 5622, 6198, 6412, 6522, 7026, 7912, 7924, 8202, 8596, 8706, 9424, 9714, 10444, 10722, 11226, 11406, 12066, 12964
Offset: 1

Views

Author

Jason Earls, Aug 09 2005

Keywords

Comments

Conjecture: Sequence is infinite.

Crossrefs

Cf. A111592.

Programs

  • Mathematica
    Select[Range[13000], MemberQ[Most[Divisors[#]], (DivisorSigma[1,#]-2*#)/2] && MemberQ[Most[Divisors[#+2]], (DivisorSigma[1,#+2]-2*(#+2))/2]&] (* James C. McMahon, Mar 29 2024 *)

A111667 Abundance of admirable numbers.

Original entry on oeis.org

4, 2, 12, 12, 10, 12, 12, 8, 12, 4, 12, 56, 4, 12, 2, 12, 120, 12, 56, 12, 12, 12, 56, 78, 12, 12, 180, 12, 56, 12, 12, 56, 12, 8, 12, 12, 12, 2, 12, 56, 12, 56, 12, 12, 12, 12, 12, 56, 2, 12, 672, 12, 12, 12, 56, 12, 12, 8, 56, 12, 12, 12, 30, 12, 32, 12, 56, 12, 12, 12, 12, 56
Offset: 1

Views

Author

Jason Earls, Aug 14 2005

Keywords

Examples

			a(1)=4 because the first admirable number is 12 and sigma(12)-24 = 4.
		

Crossrefs

Programs

  • Mathematica
    fn[n_]:=DivisorSigma[1,n]-2*n;fn/@Select[Range[1155], MemberQ[Most[Divisors[#]], (DivisorSigma[1, #]-2*#)/2]&] (* James C. McMahon, Jun 02 2024 *)

A111947 Admirable Harshad numbers.

Original entry on oeis.org

12, 20, 24, 30, 40, 42, 54, 70, 84, 102, 114, 120, 140, 222, 224, 234, 270, 308, 364, 402, 476, 644, 1002, 1148, 1204, 1638, 1652, 2022, 2202, 2212, 3164, 3250, 3472, 4172, 6200, 7588, 8204, 8432, 8596, 9424, 10002, 10014, 10724, 10792, 11202, 11228
Offset: 1

Views

Author

Jason Earls, Aug 22 2005

Keywords

Examples

			a(3)=24 because 1+2+3+4+8+12-6 = 24 and 24/6 = 4.
		

Crossrefs

Intersection of A005349 and A111592.
Cf. A111948.

Programs

  • Mathematica
    harsQ[n_] := Divisible[n, Plus @@  IntegerDigits[n]]; admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2]; Select[Range[12000], harsQ[#] && admQ[#] &] (* Amiram Eldar, Oct 27 2019 *)

A111948 Admirable Harshad numbers n such that the subtracted divisor is equal to the digital sum of n.

Original entry on oeis.org

24, 42, 114, 222, 402, 2022, 2202, 7588, 8596, 10014, 11202, 12102, 17668, 21102, 27748, 29764, 31002, 32788, 39844, 42868, 43876, 45388, 46396, 48916, 49924, 55972, 56476, 57484, 58492, 65548, 66556, 69076, 70588, 71596, 78148, 81676
Offset: 1

Views

Author

Jason Earls, Aug 22 2005

Keywords

Examples

			a(2)=42 because 1+2+3+7+14+21-6 = 42 and 42/6 = 7.
		

Crossrefs

Programs

  • Mathematica
    harsQ[n_] := Divisible[n, Plus @@  IntegerDigits[n]]; admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] &&  Plus @@ IntegerDigits[n] == ab/2 && ab/2 < n && Divisible[n, ab/2]; Select[Range[100000], harsQ[#] && admQ[#] &] (* Amiram Eldar, Oct 27 2019 *)

A165772 Numbers d*p where d is a perfect number and p

Original entry on oeis.org

30, 84, 140, 308, 364, 476, 532, 644, 1488, 2480, 3472, 5456, 6448, 8432, 9424, 11408, 14384, 18352, 20336, 21328, 23312, 24384, 26288, 29264, 30256, 33232, 35216, 36208, 39184, 40640, 41168, 44144, 48112, 50096, 51088, 53072, 54064, 56048
Offset: 1

Views

Author

M. F. Hasler, Oct 11 2009

Keywords

Comments

A subsequence of A109321, and thus admirable numbers (A111592, solutions to sigma(x)-2x = 2d with d being a proper divisor of x): If d is a perfect number (A000396), then for any prime pA111592) and d > sqrt(dp).

Examples

			For d = 6 = 2*3, we must omit 3*d (because 3 | d) and get a(1) = 5*d = 30.
For d = 28 = 4*7, we get a(2) = 3*d = 84, a(3) = 5*d = 140, we omit 7*d,
  a(4) = 11*d = 308, a(5) = 13*d = 364, a(6) = 17*d = 476, a(7) = 19*d = 532,
  a(8) = 23*d = 644. So far all terms are in order of increasing size.
For d = 496 = 16*31, we get a(9) = 3*d = 1488 through a(21) = 47*d = 23312 (omitting 31*d), but the next larger term a(22) comes from the next perfect number, see below. Then we get a(23) = 53*d = 26288 through a(29) = 39184, a(31) = 41168 through a(38) = 56048, and a(40) = 62992.
For d = 8128 = 64*127, we get a(22) = 3*d = 24384, a(30) = 5*d = 40640, a(39) = 56896, a(41) = 89408, and all following terms up to 3*4096*8191.
		

Crossrefs

Programs

  • Mathematica
    f[p_] := (2^p - 1)*2^(p - 1); evenPerf[n_] := f[MersennePrimeExponent[n]]; sp[p_, max_] := With[{pn = f[p]}, pn * Select[Complement[Range[3, Min[pn - 1, max/pn]], {2^p - 1}], PrimeQ]];
    seq[max_] := Module[{s = {}, k = 1}, While[(pn = evenPerf[k]) < max/3, s = Join[s, sp[MersennePrimeExponent[k], max]]; k++]; Union[s]]; seq[60000] (* Amiram Eldar, Aug 05 2023, assuming that there are no odd perfect numbers below max *)
  • PARI
    forprime(q=1,9, isprime(2^q-1)||next; print("\n/* q="q", d=",d=(2^q-1)<<(q-1)," */"); forprime(p=3,d-1, d%p || next; print1(d*p,", "))) /* Note: This prints the terms in order of increasingly large perfect numbers, not in order of increasing terms: e.g., 243536, the last value for d = 496 = (2^5-1)*2^4, is printed before 24384, first term for d = 8128 = (2^7-1)*2^6. */
    
  • PARI
    A165772_upto(N=10^5)=select({
      is_A165772(n)=my(v=valuation(n, 2), P); isprime(v+1) && (n=divrem(n>>v, P=2^(v+1)-1))[2]==0 && n[1] < P<M. F. Hasler, Jul 30 2024

A291457 Numbers n having a proper divisor d such that sigma(n) - k*d = k*n. Case k = 3.

Original entry on oeis.org

180, 240, 360, 420, 480, 540, 600, 660, 780, 840, 1080, 1320, 1560, 1890, 1920, 2016, 2040, 2184, 2280, 2352, 2376, 2688, 2760, 2856, 3000, 3192, 3360, 3480, 3720, 3744, 4284, 4320, 4440, 4680, 4704, 4896, 4920, 5160, 5292, 5640, 5796, 6048, 6360, 6552, 7080, 7128
Offset: 1

Views

Author

Paolo P. Lava, Aug 24 2017

Keywords

Comments

Case k=2 are the admirable numbers (A111592).

Examples

			One of the proper divisors of 1080 is 120 and sigma(1080) - 3*120 = 3600 - 360 = 3240 = 3*1080.
One of the proper divisors of 17850 is 6 and sigma(17850) - 3*6 = 53568 - 18 = 53550 = 3*17850.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,c,k; c:=0; a:=sort([op(divisors(q))]); for k from 1 to nops(a)-1 do if sigma(q)-h*a[k]=h*q then c:=1; break; fi; od; if c=1 then q; fi; end: seq(P(i,3),i=1..7200);
  • Mathematica
    k=3; Select[Range[7128], (t = DivisorSigma[1, #]/k - #; # > t > 0 && IntegerQ[t] && Mod[#, t] == 0) &] (* Giovanni Resta, Aug 25 2017 *)

A291458 Numbers n having a proper divisor d such that sigma(n) - k*d = k*n. Case k = 4.

Original entry on oeis.org

27720, 60480, 65520, 90720, 98280, 105840, 115920, 120120, 120960, 128520, 131040, 143640, 151200, 163800, 180180, 191520, 205920, 207900, 211680, 218400, 229320, 235620, 241920, 249480, 264600, 272160, 289800, 292320, 312480, 332640, 360360, 372960, 393120, 414960
Offset: 1

Views

Author

Paolo P. Lava, Aug 24 2017

Keywords

Comments

Case k=2 are the admirable numbers (A111592).

Examples

			One of the proper divisors of 27720 is 360 and sigma(27720) - 4*360 = 112320 - 1440 = 110880 = 4*27720.
One of the proper divisors of 115920 is 144 and sigma(115920) - 4*144 = 464256 - 576 = 463680 = 4*115920.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a)-1 do if sigma(n)-h*a[k]=h*n then print(n); break; fi; od; od; end: P(10^9,4);
  • Mathematica
    With[{k = 4}, Select[Range[5 * 10^5], Function[n, AnyTrue[Most@ Divisors@ n, DivisorSigma[1, n] - k # == k n &]]]] (* Michael De Vlieger, Aug 24 2017 *)
    (* or *)
    k=4; Select[Range[5*^5], (t = DivisorSigma[1, #]/k - #; #>t>0 && IntegerQ[t] && Mod[#, t] == 0) &] (* much faster, Giovanni Resta, Aug 25 2017 *)

A109321 Admirable numbers n such that the subtracted divisor is > sqrt(n).

Original entry on oeis.org

24, 30, 84, 120, 140, 224, 234, 270, 308, 364, 476, 532, 644, 672, 1488, 1638, 2480, 3472, 3724, 4095, 5456, 5624, 6200, 6435, 6448, 8432, 9424, 11408, 14384, 15872, 18352, 20336, 21328, 23312, 24384, 26288, 29264, 29450, 30256, 33232, 35150
Offset: 1

Views

Author

Jason Earls, Aug 20 2005

Keywords

Comments

Solutions to sigma(x)=2(x+d) with d > sqrt(x) being a proper divisor of x. The subsequence A165772 contains most of the terms. - M. F. Hasler, Oct 11 2009

Examples

			a(2)=30 because 1+2+3+5+10+15-6 = 30 and 6 > sqrt(30) = 5.477...
		

Crossrefs

Cf. A111592.

Programs

  • Mathematica
    aQ[n_] := (d = DivisorSigma[1, n] - 2n) > 0 && EvenQ[d] && Mod[n, d/2] == 0 && d < 2n && d^2 > 4n; Select[Range[35150], aQ]  (* Amiram Eldar, Sep 22 2019 *)
  • PARI
    is_A109321(n)= my(d=sigma(n)-2*n); d>0 && bittest(d,0)==0 && d<2*n && d*d>4*n && 2*n%d==0 \\ M. F. Hasler, Oct 11 2009
Previous Showing 11-20 of 44 results. Next