cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A165760 a(n) = (16-9*8^n)/7.

Original entry on oeis.org

1, -8, -80, -656, -5264, -42128, -337040, -2696336, -21570704, -172565648, -1380525200, -11044201616, -88353612944, -706828903568, -5654631228560, -45237049828496, -361896398627984, -2895171189023888, -23161369512191120
Offset: 0

Views

Author

Philippe Deléham, Sep 26 2009

Keywords

Crossrefs

Cf. A112555.

Programs

  • Mathematica
    (16-9*8^Range[0, 50])/7 (* or *) LinearRecurrence[{9, -8}, {1, -8}, 50] (* G. C. Greubel, Apr 07 2016 *)
  • PARI
    x='x+O('x^99); Vec((1-17*x)/(1-9*x+8*x^2)) \\ Altug Alkan, Apr 08 2016

Formula

a(n) = 8*a(n-1)-16, a(0)=1.
a(n) = 9*a(n-1) - 8*a(n-2), a(0)= 1, a(1)= -8, for n>1.
G.f.: (1-17x)/(1-9x+8x^2).
a(n) = Sum_{0<=k<=n} A112555(n,k)*(-9)^(n-k).
E.g.f.: (1/7)*(16*exp(x) - 9*exp(8*x)). - G. C. Greubel, Apr 07 2016

A166157 a(n) = (8^n+16*(-9)^n)/17.

Original entry on oeis.org

1, -8, 80, -656, 6416, -53648, 515600, -4378256, 41501456, -356735888, 3344840720, -29029824656, 269858356496, -2360005731728, 21789807399440, -191710220083856, 1760576352843536, -15563712198881168
Offset: 0

Views

Author

Philippe Deléham, Oct 08 2009

Keywords

Crossrefs

Programs

Formula

a(n) = 72*a(n-2)-a(n-1), a(0)= 1, a(1)= -8, for n>1.
G.f.: (1-7x)/(1+x-72*x^2).
a(n)= Sum_{k, 0<=k<=n} A112555(n,k)*(-9)^k.
E.g.f.: (1/17)*(exp(8*x) + 16*exp(-9*x)). - G. C. Greubel, May 01 2016

A165625 a(n)=(5/3)*(1+2*(-5)^(n-1)).

Original entry on oeis.org

1, 5, -15, 85, -415, 2085, -10415, 52085, -260415, 1302085, -6510415, 32552085, -162760415, 813802085, -4069010415, 20345052085, -101725260415, 508626302085, -2543131510415, 12715657552085, -63578287760415
Offset: 0

Views

Author

Philippe Deléham, Sep 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-4,5},{1,5},30] (* Harvey P. Dale, Nov 28 2015 *)

Formula

a(n)=(-5)*a(n-1)+10 with a(0)=1. a(0)=1, a(1)=5, a(n)=5*a(n-2)-4*a(n-1). G.f.: (1+9x)/(1+4x-5x^2). a(n)= Sum_{k, 0<=k<=n} A112555(n,k)*4^(n-k).

A165638 a(n)=(6/7)*(2+5*(-6)^(n-1)).

Original entry on oeis.org

1, 6, -24, 156, -924, 5556, -33324, 199956, -1199724, 7198356, -43190124, 259140756, -1554844524, 9329067156, -55974402924, 335846417556, -2015078505324, 12090471031956, -72542826191724, 435256957150356
Offset: 0

Views

Author

Philippe Deléham, Sep 23 2009

Keywords

Programs

  • Mathematica
    LinearRecurrence[{-5,6},{1,6},20] (* Harvey P. Dale, Jan 07 2016 *)

Formula

a(n)=(-6)*a(n-1)+12 with a(0)=1. a(0)=1, a(1)=6, a(n)=6*a(n-2)-5*a(n-1). G.f.: (1+11x)/(1+5x-6x^2). a(n)= Sum_{k, 0<=k<=n} A112555(n,k)*5^(n-k).

A165639 a(n)=(7/4)*(1+3*(-7)^(n-1)).

Original entry on oeis.org

1, 7, -35, 259, -1799, 12607, -88235, 617659, -4323599, 30265207, -211856435, 1482995059, -10380965399, 72666757807, -508667304635, 3560671132459, -24924697927199, 174472885490407, -1221310198432835, 8549171389029859
Offset: 0

Views

Author

Philippe Deléham, Sep 23 2009

Keywords

Programs

  • Mathematica
    LinearRecurrence[{-6,7},{1,7},30] (* Harvey P. Dale, Jun 05 2016 *)

Formula

a(n)=(-7)*a(n-1)+14 with a(0)=1. a(0)=1, a(1)=7, a(n)=7*a(n-2)-6*a(n-1). G.f.: (1+13x)/(1+6x-7x^2). a(n)= Sum_{k, 0<=k<=n} A112555(n,k)*6^(n-k).
Previous Showing 41-45 of 45 results.