cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A337998 Decimal expansion of Sum_{n>=1} (cos((n*Pi)/2) + sin((n*Pi)/2)) / sqrt(n).

Original entry on oeis.org

2, 3, 9, 9, 6, 3, 5, 2, 4, 4, 9, 5, 6, 3, 0, 9, 5, 5, 3, 3, 7, 5, 7, 4, 3, 1, 0, 1, 6, 0, 5, 7, 7, 2, 2, 5, 8, 9, 7, 8, 6, 4, 4, 3, 6, 8, 0, 1, 7, 7, 0, 0, 4, 2, 6, 6, 7, 6, 2, 8, 9, 3, 7, 4, 5, 0, 0, 8, 9, 9, 7, 0, 7, 9, 9, 5, 6, 0, 8, 5, 2, 1, 2, 6, 5, 7
Offset: 0

Views

Author

Peter Luschny, Nov 03 2020

Keywords

Examples

			0.2399635244956309553375743101605772258978644368017700426676289374...
		

Crossrefs

zeta(1/2, 1/k): A059750 (k=1), A113024 (k=2), this sequence (k=4).

Programs

  • Maple
    evalf(Zeta(0, 1/2, 1/4)*10^86, 100):
    ListTools:-Reverse(convert(floor(%), base, 10));
  • Mathematica
    RealDigits[Zeta[1/2, 1/4], 10, 100][[1]] (* Vaclav Kotesovec, Nov 03 2020 *)

Formula

Equals zeta(1/2, 1/4).

A362742 Decimal expansion of Sum_{k>=1} (-1)^(k+1)*floor(sqrt(k))/k.

Original entry on oeis.org

5, 9, 1, 5, 6, 0, 7, 7, 9, 3, 4, 9, 8, 1, 7, 3, 4, 0, 2, 1, 3, 8, 4, 6, 9, 0, 3, 3, 4, 5, 3, 4, 3, 4, 6, 9, 5, 6, 2, 3, 5, 3, 8, 9, 6, 2, 5, 4, 5, 6, 7, 1, 7, 4, 6, 8, 1, 0, 7, 6, 8, 4, 5, 9, 1, 6, 5, 5, 7, 9, 8, 0, 5, 3, 0, 2, 4, 9, 5, 9, 0, 8, 3, 6, 2, 7, 0, 4, 7, 2, 9, 0, 7, 8, 7, 6, 2, 7, 6, 9, 7, 8, 3, 8, 2, 7
Offset: 0

Views

Author

Amiram Eldar, May 02 2023

Keywords

Comments

If the floor function is replaced by the fractional part function, then Sum_{k>=1} (-1)^(k+1)*frac(sqrt(k))/k = (A113024 - (this constant)) = 0.01333786407...

Examples

			0.591560779349817340213846903345...
		

Crossrefs

Programs

  • Maple
    evalf(log(2) + Sum((-1)^n*n*Sum(1/((n^2 + 2*i - 1)*(n^2 + 2*i)), i = 1..n), n = 1..infinity), 200); # Vaclav Kotesovec, May 02 2023
  • Mathematica
    RealDigits[NIntegrate[(1 - EllipticTheta[4, x])/(2*x*(x + 1)), {x, 0, 1}, WorkingPrecision -> 30]][[1]]
  • PARI
    default(realprecision, 200); log(2) + sumalt(n=1, (-1)^n*n*sum(i=1, n, 1/((n^2 + 2*i - 1)*(n^2 + 2*i)) )) \\ Vaclav Kotesovec, May 02 2023

Formula

Equals log(2) + Sum_{n>=1} (-1)^n*n*Sum_{i=1..n} 1/((n^2+2*i-1)*(n^2+2*i)) (Li, 2019).
Equals Integral_{x=0..1} (1-theta_4(0,x))/(2*x*(x+1)), where theta_4(z, q) is the 4th Jacobi theta function (Hintze, 2019).

Extensions

More digits from Vaclav Kotesovec, May 02 2023

A367409 Decimal expansion of arclength of (1 - 2^(1-x)) zeta(x), for 0 < x < 1.

Original entry on oeis.org

1, 0, 1, 8, 6, 5, 6, 3, 5, 1, 6, 7, 4, 0, 5, 1, 3, 6, 7, 3, 6, 6, 2, 2, 9, 9, 2, 5, 2, 5, 2, 7, 5, 4, 5, 3, 4, 0, 2, 6, 6, 2, 2, 5, 5, 1, 2, 4, 5, 0, 1, 7, 5, 9, 5, 0, 9, 8, 6, 2, 0, 3, 0, 5, 7, 2, 0, 6, 3, 0, 7, 5, 2, 3, 7, 7, 8, 9, 5, 9, 9, 6, 6, 9, 8, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 26 2023

Keywords

Comments

See A367309.

Examples

			1.0186563516740513673662299252527545340266...
		

Crossrefs

Programs

  • Mathematica
    f[x_] := (1 - 2^(1 - x)) Zeta[x]
    y = NIntegrate[Sqrt[1 + f'[x]^2], {x, 0, 1}, WorkingPrecision -> 200]
    RealDigits[y][[1]]
  • PARI
    f(x) = (1 - 2^(1-x))*zeta(x); intnum(x=0, 1, sqrt(1+f'(x)^2)) \\ Michel Marcus, Nov 27 2023

A380547 Decimal expansion of the absolute value of the sum of the Dirichlet L-series A000035 at s=1/2.

Original entry on oeis.org

4, 2, 7, 7, 2, 7, 9, 3, 2, 6, 9, 3, 9, 7, 8, 2, 2, 1, 3, 2, 1, 1, 1, 6, 6, 1, 9, 1, 3, 9, 6, 7, 1, 2, 5, 6, 3, 5, 3, 7, 3, 3, 3, 9, 2, 9, 4, 1, 1, 6, 7, 0, 5, 5, 0, 8, 2, 1, 6, 9, 7, 1, 9, 8, 7, 1, 6, 7, 1, 6, 3, 7, 9, 8, 9, 7, 2, 0, 1, 3, 3, 9, 7, 4, 5, 0, 7, 7, 0
Offset: 0

Views

Author

R. J. Mathar, Jan 26 2025

Keywords

Comments

Defined as L(s) = (1-2^(-s))*zeta(s) by analytic continuation of the Riemann zeta function.

Examples

			Sum_{n>=1} A000035(n)/sqrt(n) = -0.42772793269397822132111661913967125635373339294116...
		

Crossrefs

Cf. A111003 (s=2), A233091 (s=3), A300707 (s=4), A059750 (zeta(1/2)), A000035, A010503, A113024, A268682.

Programs

  • Mathematica
    RealDigits[(1/Sqrt[2]-1)*Zeta[1/2], 10, 120][[1]] (* Amiram Eldar, Jan 26 2025 *)
  • PARI
    (1/sqrt(2)-1)*zeta(1/2) \\ Amiram Eldar, Jan 26 2025

Formula

Equals A010503 * A113024 = Sum_{n>=1} (-1)^(n+1)/sqrt(2*n). - Amiram Eldar, Jan 26 2025
Previous Showing 11-14 of 14 results.