cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A255258 Expansion of q^2 * phi(q) * psi(q^16) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0
Offset: 2

Views

Author

Michael Somos, Feb 19 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q^2 + 2*q^3 + 2*q^6 + 2*q^11 + 3*q^18 + 2*q^19 + 2*q^22 + 4*q^27 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 89); A[3] + 2*A[4] + 2*A[7] + 2*A[12];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q^8] / 2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<2, 0, n -= 2; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^32 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^16 + A)), n))};
    

Formula

Expansion of eta(q^2)^5 * eta(q^32)^2 / (eta(q)^2 * eta(q^4)^2 * eta(q^16)) in powers of q.
Euler transform of period 32 sequence [ 2, -3, 2, -1, 2, -3, 2, -1, 2, -3, 2, -1, 2, -3, 2, 0, 2, -3, 2, -1, 2, -3, 2, -1, 2, -3, 2, -1, 2, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 8^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A224609.
(-1)^n * a(n) = A227395(n).
a(4*n) = a(4*n + 1) = a(8*n + 7) = 0. a(4*n + 2) = A113411(n). a(8*n + 3) = 2 * A033761(n).

A129438 Expansion of (phi(q) * phi(q^2) + phi(-q^2) * phi(q^4)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 2, 2, 0, 0, 0, 2, 3, 0, 2, 4, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 4, 1, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 6, 0, 0, 0, 0, 2, 0, 2, 4, 0, 0, 0, 4, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 0, 6, 2, 0, 2, 4, 0, 0, 0, 0, 5, 0, 2, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 14 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q + 2*q^3 + 2*q^4 + 2*q^8 + 3*q^9 + 2*q^11 + 4*q^12 + 2*q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] + EllipticTheta[ 4, 0, q^2] EllipticTheta[ 3, 0, q^4]) / 2, {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep([1, 0; 0, 8], n)[n] + qfrep([3, 1; 1, 3], n)[n])};

Formula

Moebius transform is period 32 sequence [1, -1, 1, 2, -1, -1, -1, 0, 1, 1, 1, 2, -1, 1, -1, 0, 1, -1, 1, -2, -1, -1, -1, 0, 1, 1, 1, -2, -1, 1, -1, 0, ...].
a(4*n + 2) = a(8*n + 5) = a(8*n + 7) = 0.
a(n) = A125096(n) unless n=0. a(8*n + 1) = A112603(n). a(8*n + 3) = 2 * A033761(n).
a(2*n + 1) = A113411(n). a(4*n) = A033715(n). - Michael Somos, Nov 11 2015

A133693 Expansion of (1 - phi(-q) * phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 2, -1, 0, -2, 0, -1, 3, 0, 2, -2, 0, 0, 0, -1, 2, -3, 2, 0, 0, -2, 0, -2, 1, 0, 4, 0, 0, 0, 0, -1, 4, -2, 0, -3, 0, -2, 0, 0, 2, 0, 2, -2, 0, 0, 0, -2, 1, -1, 4, 0, 0, -4, 0, 0, 4, 0, 2, 0, 0, 0, 0, -1, 0, -4, 2, -2, 0, 0, 0, -3, 2, 0, 2, -2, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
For n nonzero, a(n) is nonzero if and only if n is in A002479.

Examples

			G.f. = q - q^2 + 2*q^3 - q^4 - 2*q^6 - q^8 + 3*q^9 + 2*q^11 - 2*q^12 - q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[ n, KroneckerSymbol[ -2, #] &]]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, kronecker( -2, d)))};

Formula

Expansion of (1 - eta(q)^2 * eta(q^4)^5 / (eta(q^2)^3 * eta(q^8)^2)) / 2 in powers of q.
Moebius transform is period 16 sequence [ 1, -2, 1, 0, -1, -2, -1, 0, 1, 2, 1, 0, -1, 2, -1, 0, ...].
a(n) is multiplicative with a(2^e) = -1 if e>0, a(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8), a(p^e) = e + 1 if p == 1, 3 (mod 8).
a(8*n + 5) = a(8*n + 7) = 0. A133692(n) = -2 * a(n) unless n=0. a(n) = -(-1)^n * A002325(n). a(2*n + 1) = A113411(n).

A244553 Expansion of phi(q^2) * (phi(q) - phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 2, -1, 0, 2, 0, -1, 3, -4, 2, 2, 0, 0, 0, -1, 2, 1, 2, -4, 0, 2, 0, 2, 1, -4, 4, 0, 0, 0, 0, -1, 4, -2, 0, 1, 0, 2, 0, -4, 2, 0, 2, 2, 0, 0, 0, 2, 1, -5, 4, -4, 0, 4, 0, 0, 4, -4, 2, 0, 0, 0, 0, -1, 0, 4, 2, -2, 0, 0, 0, 1, 2, -4, 2, 2, 0, 0, 0, -4, 5
Offset: 1

Views

Author

Michael Somos, Jun 30 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - q^2 + 2*q^3 - q^4 + 2*q^6 - q^8 + 3*q^9 - 4*q^10 + 2*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 33); A[2] - A[3];
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ {1, -2, 1, 0, -1, 2, -1, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -2, 1, 0, -1, 2, -1][d%8 + 1]))};
    
  • PARI
    {a(n) = my(A, B); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); B = subst(A, x, x^2); polcoeff( B * (A - B) / 2, n))};
    
  • Sage
    A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[1] - A[2];
    

Formula

Expansion of q * f(-q, -q^7)^2 * phi(q^2) / psi(-q) = q * f(-q, -q^7)^2 * chi(q^2)^2 / chi(-q) in powers of q where phi(), psi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [ -1, 2, 1, -2, 1, 2, -1, -2, ...].
Moebius transform is period 8 sequence [ 1, -2, 1, 0, -1, 2, -1, 0, ...].
a(2*n) = - A244554(n). a(2*n + 1) = A113411(n). a(8*n + 1) = A112603(n). a(8*n + 3) = 2 * A033761(n). a(8*n + 5) = a(8*n + 7) = 0.
Previous Showing 11-14 of 14 results.