cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A156144 Number of partitions of n into parts having in decimal representation the same digital root as n has.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 3, 2, 3, 1, 1, 2, 1, 1, 3, 5, 2, 5, 1, 1, 2, 1, 1, 5, 8, 4, 8, 2, 1, 4, 1, 1, 7, 13, 5, 13, 2, 2, 5, 1, 1, 11, 20, 9, 19, 3, 2, 9, 1, 1, 15, 31, 12, 29, 4, 3, 11, 2, 1, 22, 46, 20, 42, 7, 4, 18, 2, 2, 30, 68, 27, 61, 9, 6, 23, 3, 2, 42, 98, 42, 85
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 05 2009

Keywords

Comments

a(n) <= a(n+9); Max{n: a(n)=1} = 71;
A156145 and A017173 give record values and where they occur: a(A017173(n-1))=A156145(n);
a(A017173(n)) = A116371(A017173(n)).

Examples

			a(19) = #{19, 10+1+1+1+1+1+1+1+1+1, 19x1} = 3;
a(20) = #{20, 2+2+2+2+2+2+2+2+2+2} = 2;
a(21) = #{21, 3+3+3+3+3+3+3, 12+3+3+3} = 3;
a(22) = #{22} = 1;
		

Crossrefs

Programs

  • Haskell
    a156144 n = p [x | x <- [1..n], a010888 x == a010888 n] n where
       p _  0 = 1
       p [] _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 04 2014

A224106 Numerators of poly-Cauchy numbers of the second kind hat c_n^(4).

Original entry on oeis.org

1, -1, 97, -1147, 3472243, -653983, 74118189437, -1058923294571, 777910456216513, -285577840060819, 23240203016832136201, -216925341603548096639, 1222007019804929270080450811
Offset: 0

Views

Author

Takao Komatsu, Mar 31 2013

Keywords

Comments

The poly-Cauchy numbers of the second kind hat c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).

Crossrefs

Cf. A002657, A223902, A224105, A114102, A224104, A224105 (denominators).

Programs

  • Mathematica
    Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^4, {k, 0, n}]], {n, 0,
      25}]
  • PARI
    a(n) = numerator(sum(k=0, n,(-1)^k*stirling(n, k, 1)/(k+1)^4)); \\ Michel Marcus, Nov 15 2015
Previous Showing 11-12 of 12 results.