cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A184753 a(n) = A184752(n)/A130650(n) unless A130650(n) = 0 in which case a(n) = 0.

Original entry on oeis.org

0, 0, 4, 1, 13, 2, 1, 10, 1, 5, 16, 1, 15, 16, 22, 5, 37, 2, 4, 2, 1, 24, 11, 10, 2, 28, 23, 11, 41, 20, 2, 3, 73, 13, 76, 12, 1, 20, 13, 85, 34, 1, 21, 2, 46, 62, 5, 3, 2, 2, 2, 1, 2, 78, 39, 80, 81, 122, 3, 63, 51, 32, 88, 1, 1, 1, 69, 70
Offset: 1

Views

Author

Rémi Eismann, Jan 21 2011

Keywords

Comments

a(n) is the "level" of 3-almost primes.
The decomposition of 3-almost primes into weight * level + gap is A014612(n) = A130650(n) * a(n) + A114403(n) if a(n) > 0.
a(n) = A014612(n) - A114403(n) if A014612(n) - A114403(n) > A114403(n), 0 otherwise.

Examples

			For n = 1 we have A130650(1) = 0, hence a(1) = 0.
For n = 3 we have A184752(3)/A130650(3)= 16 / 4 = 4; hence a(3) = 4.
For n = 21 we have A184752(21)/A130650(21)= 97 / 97 = 28; hence a(21) = 1.
		

Crossrefs

A114404 4-almost prime gaps. First differences of A014613.

Original entry on oeis.org

8, 12, 4, 14, 2, 4, 21, 3, 4, 2, 10, 4, 22, 6, 3, 1, 4, 10, 2, 4, 28, 5, 7, 2, 6, 6, 10, 5, 3, 4, 2, 14, 2, 10, 16, 18, 2, 1, 9, 2, 7, 13, 2, 10, 2, 2, 4, 2, 1, 13, 8, 3, 1, 4, 10, 24, 10, 17, 3, 15, 1, 2, 10, 4, 8, 4, 2, 2, 3, 15, 3, 3, 6, 3, 7, 4, 10, 4, 8, 6, 4, 2, 2, 8, 4, 1, 35, 1, 4, 7, 4, 8, 6
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 8 = 24-16 where 16 is the first 4-almost prime and 24 is the second.
a(2) = 12 = 36-24.
a(3) = 4 = 40-36.
a(4) = 14 = 54-40.
a(5) = 2 = 56-54.
a(6) = 4 = 60-56.
a(7) = 21 = 81-60.
a(13) = 22 = 126-104.
a(21) = 28 = 184-156.
		

Crossrefs

Programs

  • Maple
    A114404 := proc(nmax) local a,i,a014613 ; a := [] ; i := 1 ; a014613 := -1 ; while nops(a) < nmax do if numtheory[bigomega](i) = 4 then if a014613 > 0 then a := [op(a),i-a014613] ; fi ; a014613 := i ; fi ; i := i+1 ; end: a ; end: A114404(200) ; # R. J. Mathar, May 10 2007
  • Mathematica
    Differences[Select[Range[800],Total[FactorInteger[#][[All,2]]]==4&]] (* Harvey P. Dale, Feb 14 2017 *)
    Select[Range[1000],PrimeOmega[#]==4&]//Differences (* Harvey P. Dale, May 12 2018 *)

Formula

a(n) = A014613(n+1) - A014613(n).

Extensions

Corrected and extended by R. J. Mathar, May 10 2007

A114406 6-almost prime gaps. First differences of A046306.

Original entry on oeis.org

32, 48, 16, 56, 8, 16, 84, 12, 16, 8, 40, 16, 70, 18, 24, 12, 4, 16, 40, 8, 16, 105, 7, 20, 28, 8, 18, 6, 24, 40, 20, 12, 16, 8, 56, 8, 40, 64, 30, 42, 8, 4, 27, 9, 8, 28, 52, 8, 30, 10, 8, 8, 16, 8, 4, 52, 32, 12, 4, 16, 40, 96, 40, 5, 63, 12, 6, 54, 4, 8, 40, 2, 14, 32, 16, 8, 8, 12, 45
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 32 = 96-64 where 64 is the first 6-almost prime and 96 is the second.
a(2) = 48 = 144-96.
a(3) = 16 = 160-144.
a(4) = 56 = 216-160.
a(5) = 8 = 224-216.
a(6) = 16 = 240-224.
a(7) = 84 = 324-240.
a(8) = 12 = 336-324.
a(22) = 105 = 729-624.
		

Crossrefs

Formula

a(n) = A046306(n+1) - A046306(n).

Extensions

More terms from R. J. Mathar, Aug 31 2007

A114407 7-almost prime gaps. First differences of A046308.

Original entry on oeis.org

64, 96, 32, 112, 16, 32, 168, 24, 32, 16, 80, 32, 140, 36, 48, 24, 8, 32, 80, 16, 32, 210, 14, 40, 56, 16, 36, 12, 48, 80, 40, 24, 32, 16, 112, 16, 80, 107, 21, 60, 84, 16, 8, 54, 18, 16, 56, 104, 16, 60, 20, 16, 16, 32, 16, 8, 104, 64, 24, 8, 32, 80, 192, 80, 10, 126, 24, 12
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 64 = 192-128 where 128 is the first 7-almost prime and 192 is the second.
a(2) = 96 = 288-192.
a(3) = 32 = 320-288.
a(4) = 112 = 432-320.
a(5) = 16 = 448-432.
a(6) = 32 = 480-448.
a(7) = 168 = 648-480.
a(8) = 24 = 672-648.
		

Crossrefs

Programs

  • Mathematica
    Differences[Select[Range[10000],PrimeOmega[#]==7&]] (* Harvey P. Dale, Oct 13 2019 *)

Formula

a(n) = A046308(n+1) - A046308(n).

Extensions

Corrected and extended by R. J. Mathar, Aug 31 2007

A114408 8-almost prime gaps. First differences of A046310.

Original entry on oeis.org

128, 192, 64, 224, 32, 64, 336, 48, 64, 32, 160, 64, 280, 72, 96, 48, 16, 64, 160, 32, 64, 420, 28, 80, 112, 32, 72, 24, 96, 160, 80, 48, 64, 32, 224, 32, 160, 214, 42, 120, 168, 32, 16, 108, 36, 32, 112, 208, 32, 120, 40, 32, 32, 64, 32, 16, 208, 128, 48
Offset: 1

Views

Author

Jonathan Vos Post, Dec 03 2005

Keywords

Examples

			a(1) = 128 = 384-256 = A046310(2) - A046310(1).
a(2) = 192 = 576-384.
a(3) = 64 = 640-576.
a(4) = 224 = 864-640.
a(5) = 32 = 896-864.
a(6) 64 = 960-896.
a(7) = 336 = 1296-960.
a(8) = 48 = 1344-1296.
a(22) = 420 = 2916-2496.
		

Crossrefs

Formula

a(n) = A046310(n+1) - A046310(n).

A114415 Records in 5-almost prime gaps ordered by merit.

Original entry on oeis.org

16, 24, 28, 42, 56, 70
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

Next term, if it exists, is associated with indices above 100000 in A114405 and A014614. - R. J. Mathar, May 10 2007

Examples

			Records defined in terms of A114405 and A014614:
  n  A114405(n)  A114405(n)/log_10(A014614(n))
  =  ==========  =============================
  1      16      16/log_10(32)  = 10.6301699
  2      24      24/log_10(48)  = 14.2751673
  3      8       8/log_10(72)   = 4.30725248
  4      28      28/log_10(80)  = 14.7129144
  5      4       4/log_10(108)  = 1.96712564
  6      8       8/log_10(112)  = 3.90392819
  7      42      42/log_10(120) = 20.2002592
  8      6       6/log_10(168)  = 2.69625443
  ...
  22     56      56/log_10(312) = 22.4524976
		

Crossrefs

Programs

  • Maple
    A014614 := proc(nmax) local a,i; a := [] ; i := 1 ; while nops(a) < nmax do if numtheory[bigomega](i) = 5 then a := [op(a),i] ; fi ; i := i+1 ; end: a ; end: A114405 := proc(a014614) local a,i; a := [] ; for i from 2 to nops(a014614) do a := [op(a), op(i,a014614)-op(i-1,a014614)] ; od ; a ; end: a014614 := A014614(100000) : a114405 := A114405(a014614) : Digits := 30 : rec := -1 : for i from 1 to nops(a114405) do if evalf(a114405[i]/log(a014614[i])) > rec then printf("%d, ",a114405[i]) ; rec := evalf(a114405[i]/log(a014614[i])) ; fi ; od ; # R. J. Mathar, May 10 2007

Formula

a(n) = records in A114405(n)/log_10(A014614(n)) = records in (A014614(n+1) - A014614(n))/log_10(A014614(n)).

Extensions

a(6) from R. J. Mathar, May 10 2007

A114417 Records in 7-almost prime gaps, ordered by merit.

Original entry on oeis.org

64, 96, 112, 168, 210, 280
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			Records defined in terms of A114407 and A046308:
n A114407(n) A114407(n)/log(A046308(n))
1 64 64/log 128 = 30.371914
2 96 96/log 192 = 42.0443868
3 32 32/log 288 = 13.0113433
4 112 112/log 320 = 44.7079021
5 16 16/log 432 = 6.07099172
6 32 32/log 448 = 12.0696509
7 168 168/log 480 = 62.6575474
8 24 24/log 648 = 8.53614076
		

Crossrefs

Formula

a(n) = Records in A114417(n)/log(A046308(n)) = Records in (A046308(n+1) - A046308(n))/log(A046308(n)).

Extensions

a(5)-a(6) from Donovan Johnson, Feb 17 2010

A114418 Records in 8-almost prime gaps ordered by merit.

Original entry on oeis.org

128, 192, 224, 336, 420, 560
Offset: 1

Views

Author

Jonathan Vos Post, Dec 03 2005

Keywords

Examples

			Records defined in terms of A114408 and A046310:
n A114418(n) A114418(n)/log(A046310(n)).
1 128 128/log 256 = 53.1508495
2 192 192/log 384 = 74.2938824
3 64 64/log 576 = 23.1848568
4 224 224/log 640 = 79.8238182
5 32 32/log 864 = 10.8972758
6 64 64/log 896 = 21.6779549
7 336 336/log 960 = 112.665809
8 48 48/log 1296 = 15.4211665
22 420 420/log 2496 = 123.629603
		

Crossrefs

Formula

a(n) = records in A114418(n)/log(A046310(n)) = records in (A046310(n+1) - A046310(n))/log(A046310(n)).

Extensions

Offset corrected and a(6) from Donovan Johnson, Feb 17 2010

A121906 Excess of n-th 3-almost prime A014612 over previous prime.

Original entry on oeis.org

1, 1, 1, 1, 4, 5, 1, 1, 1, 2, 3, 5, 2, 5, 1, 3, 2, 3, 5, 3, 1, 2, 1, 2, 1, 1, 3, 4, 11, 12, 3, 1, 8, 9, 2, 3, 1, 2, 3, 4, 5, 1, 2, 1, 5, 7, 9, 2, 8, 1, 11, 1, 2, 3, 5, 1, 3, 4, 5, 4, 1, 4, 3, 5, 2, 4, 2, 1, 1, 2, 3, 7, 9, 3, 3, 1, 5, 8, 1, 2
Offset: 1

Views

Author

Jonathan Vos Post, Sep 01 2006

Keywords

Comments

a(n) = 1 iff n-th 3-almost prime is of form prime + 1 (not yet in OEIS). See also: A109067 3-almost primes of the form semiprime + 1.

Examples

			a(1) = 8 - 7 = 1; a(2) = 12 - 11 = 1; a(3) = 18 - 17 = 1;
a(4) = 20 - 19 = 1; a(5) = 27 - 23 = 4; a(6) = 28 - 23 = 5;
a(7) = 30 - 29 = 1.
		

Crossrefs

Programs

  • Maple
    A014612 := proc(n) option remember; local a; if n = 1 then 8; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 3 then return a; end if; end do: end if; end proc:
    A121906 := proc(n) local t; t := A014612(n) ; t-prevprime(t) ; end proc:
    seq(A121906(n),n=1..80) ; # R. J. Mathar, Dec 22 2010
  • Mathematica
    lim=335;p3=Select[Range[lim], PrimeOmega[#] == 3 &] ;l3=Length[p3];Table[p3[[n]]-NextPrime[p3[[n]],-1],{n,l3}] (* James C. McMahon, Oct 24 2024 *)

Formula

a(n) = Min{A014612(n) - p where p is in A000040 and 1

Extensions

a(13) corrected by R. J. Mathar, Dec 22 2010

A110934 Difference between 3-almostprime(n) and 3-almostprime(n+2).

Original entry on oeis.org

10, 8, 9, 8, 3, 14, 14, 3, 6, 7, 13, 14, 5, 4, 7, 6, 3, 16, 20, 7, 4, 6, 8, 9, 6, 3, 8, 8, 6, 13, 17, 10, 6, 6, 11, 11, 6, 6, 2, 3, 3, 8, 11, 6, 4, 7, 17, 17, 15, 18, 9, 6, 7, 6, 6, 3, 2, 10, 12, 6, 8, 7, 7, 7, 6, 7, 5, 3, 2, 5, 6, 20, 24, 8, 6, 7, 10, 8, 6, 10, 7
Offset: 1

Views

Author

Jonathan Vos Post, Jan 21 2006

Keywords

Comments

This is the 3-almost prime analog of what A113784 is for semiprimes and what A031131 is for primes. The minimum values in the sequence are 2 because we have, for example, the 3 consecutive 3-almost primes 170, 171, 172, so a(39) = A014612(41) - A014612(39) = 172 - 170 = 2. Equivalently, there are 2 consecutive 1 values of A114403 (3-almost prime gaps; first differences of A014612). This happens for elements of A113789 (numbers n such that n, n+1 and n+2 are 3-almost primes).

Examples

			a(1) = 10 because the difference between the first and third 3-almost primes is A014612(3) - A014612(1) = 18 - 8 = 10.
a(2) = A014612(4) - A014612(2) = 20 - 12 = 8.
a(3) = A014612(5) - A014612(3) = 27 - 18 = 9.
		

Crossrefs

Formula

a(n) = A014612(n+2) - A014612(n).

Extensions

a(28) corrected by R. J. Mathar, Dec 22 2010
Previous Showing 11-20 of 23 results. Next