cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A115874 Integers i such that 19*i = 55 X i.

Original entry on oeis.org

0, 7, 14, 28, 31, 56, 62, 63, 112, 119, 124, 126, 127, 224, 238, 248, 252, 254, 255, 448, 455, 476, 496, 504, 508, 510, 511, 896, 910, 952, 992, 1008, 1016, 1020, 1022, 1023, 1792, 1799, 1820, 1823, 1904, 1911, 1984, 1991, 2016, 2032, 2040, 2044
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2006

Keywords

Comments

Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).
From Robert Israel, Apr 08 2018: (Start)
n is in the sequence if and only if 2*n is.
If n is in the sequence, then so is (2^k+1)*n if 2^k > n.
Contains 2^k-1 for k >= 5. (End)

Crossrefs

Row 19 of A115872. Superset of A115876? A115875 shows this sequence in binary.

Programs

  • Maple
    X:= proc(a,b) local A,B,C;
    A:= convert(a,base,2);
    B:= convert(b,base,2);
    C:= expand(add(A[i]*x^(i-1),i=1..nops(A))*add(B[i]*x^(i-1),i=1..nops(B))) mod 2;
    eval(C,x=2)
    end proc:
    select(t -> 19*t = X(55,t), [$0..10^4]); # Robert Israel, Apr 08 2018
  • Mathematica
    X[a_, b_] := Module[{A, B, C},
         A = Reverse@IntegerDigits[a, 2];
         B = Reverse@IntegerDigits[b, 2];
         C = Expand[
            Sum[A[[i]]*x^(i-1), {i, 1, Length[A]}]*
            Sum[B[[i]]*x^(i-1), {i, 1, Length[B]}]];
         PolynomialMod[C, 2] /. x -> 2];
    Select[Range[0, 10^4], 19*# == 55~X~#&] (* Jean-François Alcover, Jan 04 2022, after Robert Israel *)

Extensions

Offset corrected by Robert Israel, Apr 08 2018

A325573 Odd numbers n that have divisor d > 1 such that A048720(A065621(d),n/d) = n.

Original entry on oeis.org

9, 21, 33, 35, 45, 49, 65, 75, 93, 105, 129, 133, 135, 153, 155, 161, 165, 189, 195, 217, 225, 259, 273, 279, 297, 309, 315, 341, 345, 381, 385, 403, 441, 465, 513, 525, 527, 561, 567, 585, 589, 597, 611, 621, 635, 645, 651, 681, 693, 705, 713, 729, 765, 775, 793, 819, 837, 889, 899, 945, 961, 1025, 1029, 1035, 1057, 1065
Offset: 1

Views

Author

Antti Karttunen, May 10 2019

Keywords

Crossrefs

Subsequence of A071904 and of A325572.

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    isA325573(n) = ((n%2)&&fordiv(n,d,if(A048720(A065621(n/d),d)==n,return(d
    				

A379126 a(1) = 1; for n > 1, a(n) is the least number k such that A325567(k) = n, or 0 if no such number exists.

Original entry on oeis.org

1, 4, 9, 8, 35, 18, 49, 16, 135, 70, 33, 36, 65, 98, 225, 32, 527, 270, 133, 140, 651, 66, 161, 72, 775, 130, 837, 196, 899, 450, 961, 64, 2079, 1054, 525, 540, 259, 266, 273, 280, 2583, 1302, 129, 132, 2835, 322, 705, 144, 3087, 1550, 3213, 260, 3339, 1674, 385, 392, 1539, 1798, 3717, 900, 3843, 1922, 3969, 128
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2024

Keywords

Comments

By definition, sequence is injective (apart from possible 0's) and each a(n) is a multiple of n.

Crossrefs

Cf. A048720, A065621, A277320, A325567, A379128 (odd bisection), A379228 [= a(n)/n].
Cf. also A115872, A266195, A266351.

Programs

  • PARI
    A048720(b, c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1, n+n-1);
    memoA325567 = Map();
    A325567(n) = if(1==n,1,my(v); if(mapisdefined(memoA325567,n,&v), v, fordiv(n, d, if((d>1)&&A048720(A065621(n/d), d)==n, v = (n/d); break)); mapput(memoA325567,n,v); (v)));
    A379126(n) = for(k=1,oo,if(A325567(k)==n, return(k)));

Formula

a(n) = n * A379228(n).

A114384 Integers i such that 49*i = 81 X i.

Original entry on oeis.org

0, 21, 42, 63, 84, 85, 126, 127, 168, 170, 189, 191, 252, 253, 254, 255, 336, 340, 341, 378, 382, 383, 504, 506, 508, 509, 510, 511, 672, 680, 682, 693, 701, 703, 756, 757, 764, 765, 766, 767, 1008, 1012, 1013, 1016, 1018, 1020, 1021, 1022, 1023, 1344
Offset: 0

Views

Author

Antti Karttunen, Feb 07 2006

Keywords

Comments

Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).

Crossrefs

Row 49 of A115872. A114385 shows this sequence in binary. Cf. A114392.

A379120 a(1) = 1; and for n > 1, a(n) is the smallest divisor d > 1 of n such that A048720(A065621(n/d),d) is equal to n.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 15, 2, 17, 3, 19, 5, 7, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 2, 3, 17, 7, 3, 37, 19, 39, 5, 41, 7, 43, 11, 15, 23, 47, 3, 7, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 2, 5, 3, 67, 17, 69, 7, 71, 3, 73, 37, 15, 19, 77, 39, 79, 5, 81, 41, 83, 7, 85, 43, 87, 11, 89
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A379120(n) = if(1==n,n,fordiv(n,d,if((d>1)&&A048720(A065621(n/d),d)==n,return(d))));

Formula

a(n) = n / A325567(n).
Previous Showing 21-25 of 25 results.