A351237
Numbers M such that 83 * M = 1M1, where 1M1 denotes the concatenation of 1, M and 1.
Original entry on oeis.org
137, 13698630137, 1369863013698630137, 136986301369863013698630137, 13698630136986301369863013698630137, 1369863013698630136986301369863013698630137, 136986301369863013698630136986301369863013698630137
Offset: 1
83 * 137 = 1[137]1, hence 137 is a term.
83 * 13698630137 = 1[13698630137]1, and 13698630137 is another term.
- D. Wells, 112359550561797732809 entry, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1997, p. 196.
-
seq((10^(8*n-4)+1)/73, n=1..15);
-
Table[(10^(8*n-4)+1)/73, {n, 1, 7}] (* Amiram Eldar, Feb 06 2022 *)
LinearRecurrence[{100000001,-100000000},{137,13698630137},20] (* Harvey P. Dale, Nov 01 2022 *)
A351238
Numbers M such that 87 * M = 1M1, where 1M1 denotes the concatenation of 1, M and 1.
Original entry on oeis.org
13, 12987013, 12987012987013, 12987012987012987013, 12987012987012987012987013, 12987012987012987012987012987013, 12987012987012987012987012987012987013, 12987012987012987012987012987012987012987013, 12987012987012987012987012987012987012987012987013, 12987012987012987012987012987012987012987012987012987013
Offset: 1
87 * 13 = 1[13]1, hence 13 is a term.
87 * 12987013 = 1[12987013]1, and 12987013 is a term.
- D. Wells, 112359550561797732809 entry, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1997, p. 196.
-
seq((10^(6*n-3)+1)/77, n=1..15);
-
Table[(10^(6*n - 3) + 1)/77, {n, 1, 10}] (* Amiram Eldar, Feb 06 2022 *)
A351239
Numbers M such that 101 * M = 1M1, where 1M1 denotes the concatenation of 1, M and 1.
Original entry on oeis.org
11, 10989011, 10989010989011, 10989010989010989011, 10989010989010989010989011, 10989010989010989010989010989011, 10989010989010989010989010989010989011, 10989010989010989010989010989010989010989011, 10989010989010989010989010989010989010989010989011
Offset: 1
101 * 11 = 1[11]1, hence 11 is a term.
101 * 10989011 = 1[10989011]1 and 10989011 is another term.
- D. Wells, 112359550561797732809 entry, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1997, p. 196.
-
seq((10^(6*n-3)+1)/91, n=1..15);
-
Table[(10^(6*n - 3) + 1)/91, {n, 1, 9}] (* Amiram Eldar, Feb 06 2022 *)
LinearRecurrence[{1000001,-1000000},{11,10989011},10] (* Harvey P. Dale, Sep 12 2022 *)
A136296
"Special augmented primes": primes p such that the decimal number 1p1 is divisible by p.
Original entry on oeis.org
11, 13, 137, 9091, 909091, 5882353, 909090909090909091, 909090909090909090909090909091, 9090909090909090909090909090909090909090909090909091, 909090909090909090909090909090909090909090909090909090909090909091
Offset: 1
11371/137 = 83, an integer, so the prime 137 is a term.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 61.
-
max=6; a={}; For[i=1, i<=10^max, i++, If[Mod[FromDigits[Join[{1}, IntegerDigits[Prime[i]], {1}]], Prime[i]] == 0, AppendTo[a, Prime[i]]]]; a (* Stefano Spezia, Mar 26 2023 *)
-
A136296k(k) = { local(l, d, lb, ub); d=factor(10^(k+1)+1)[,1]; l=[]; lb=10^(k-1); ub=10*lb; for(i=1,#d,if(d[i]>=lb&&d[i]A136296k(k))) \\ Franklin T. Adams-Watters, Apr 23 2008
-
from sympy import isprime
from itertools import count, islice
def agen(): # generator of terms
for k in count(2):
t = 10**(k+1) + 1
d = [t//i for i in range(100, 10, -1) if t%i == 0]
yield from (di for di in d if isprime(di))
print(list(islice(agen(), 8))) # Michael S. Branicky, Mar 26 2023 following Franklin T. Adams-Watters but removing factorization
Comments