cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A184645 Number of partitions of n having no parts with multiplicity 10.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 56, 76, 100, 133, 174, 227, 293, 378, 482, 614, 777, 980, 1229, 1538, 1913, 2375, 2936, 3619, 4445, 5447, 6650, 8102, 9844, 11929, 14421, 17397, 20934, 25141, 30130, 36035, 43014, 51253, 60952, 72367, 85771, 101488
Offset: 0

Views

Author

Alois P. Heinz, Jan 18 2011

Keywords

Comments

In general, if k>=1 and g.f. = Product_{j>0} (1 - x^(k*j) + x^((k+1)*j)) / (1-x^j), then a(n) ~ exp(sqrt((Pi^2/3 + 4*r)*n)) * sqrt(Pi^2/6 + 2*r) / (4*Pi*n), where r = Integral_{x=0..oo} log(1 + exp(-x) - exp(-k*x) + exp(-(k+2)*x)) dx. - Vaclav Kotesovec, Jun 12 2025

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->`if`(j=10, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> (l-> l[1]-l[2])(b(n, n)):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == 10, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]];
    a[n_] := b[n, n][[1]] - b[n, n][[2]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

Formula

a(n) = A000041(n) - A183567(n).
a(n) = A183568(n,0) - A183568(n,10).
G.f.: Product_{j>0} (1-x^(10*j)+x^(11*j))/(1-x^j).
a(n) ~ exp(sqrt((Pi^2/3 + 4*r)*n)) * sqrt(Pi^2/6 + 2*r) / (4*Pi*n), where r = Integral_{x=0..oo} log(1 + exp(-x) - exp(-10*x) + exp(-12*x)) dx = 0.81326581550954971049947225462608121545474493920551191360132... - Vaclav Kotesovec, Jun 12 2025

A116644 Triangle read by rows: T(n,k) is the number of partitions of n having exactly k doubletons (n>=0, k>=0). By a doubleton in a partition we mean an occurrence of a part exactly twice (the partition [4,(3,3),2,2,2,(1,1)] has two doubletons, shown between parentheses).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 2, 5, 2, 8, 2, 1, 10, 5, 13, 8, 1, 20, 9, 1, 26, 12, 4, 33, 21, 2, 46, 25, 5, 1, 58, 37, 6, 75, 48, 11, 1, 101, 59, 16, 125, 84, 19, 3, 157, 115, 23, 2, 206, 135, 39, 5, 253, 187, 46, 4, 317, 238, 63, 8, 1, 403, 292, 90, 7, 494, 382, 108, 17, 1, 608, 490, 139, 18
Offset: 0

Views

Author

Emeric Deutsch, Feb 20 2006

Keywords

Comments

Apparently, rows n with p(p+1)<=n<(p+1)(p+2) have at most p+1 terms. Row sums are the partition numbers (A000041). T(n,0)=A116645(n). Sum(k*T(n,k),k>=0)=A116646(n).

Examples

			T(6,2) = 1 because [2,2,1,1] is the only partition of 6 with 2 doubletons.
Triangle starts:
1;
1;
1,  1;
3;
3,  2;
5,  2;
8,  2, 1;
10, 5;
13, 8, 1;
		

Crossrefs

Programs

  • Maple
    g:=product(1+x^j+t*x^(2*j)+x^(3*j)/(1-x^j),j=1..35): gser:=simplify(series(g,x=0,35)): P[0]:=1: for n from 1 to 24 do P[n]:=coeff(gser,x^n) od: for n from 0 to 24 do seq(coeff(P[n],t,j),j=0..degree(P[n])) od; # sequence given in triangular form

Formula

G.f.: G(t,x) = product(1+x^j+tx^(2j)+x^(3j)/(1-x^j), j=1..infinity).
Previous Showing 11-12 of 12 results.