cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A116645 Number of partitions of n having no doubletons. By a doubleton in a partition we mean an occurrence of a part exactly twice (the partition [4,(3,3),2,2,2,(1,1)] of 18 has two doubletons, shown between parentheses).

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 8, 10, 13, 20, 26, 33, 46, 58, 75, 101, 125, 157, 206, 253, 317, 403, 494, 608, 760, 926, 1131, 1393, 1685, 2038, 2487, 2985, 3585, 4331, 5168, 6172, 7392, 8771, 10410, 12382, 14622, 17258, 20400, 23975, 28159, 33115, 38739, 45298, 53000
Offset: 0

Views

Author

Emeric Deutsch and Vladeta Jovovic, Feb 20 2006

Keywords

Comments

Number of partitions of n having no part that appears exactly twice.
Infinite convolution product of [1,1,0,1,1,1,1,1,1,1] aerated n-1 times. I.e., [1,1,0,1,1,1,1,1,1,1] * [1,0,1,0,0,0,1,0,1,0] * [1,0,0,1,0,0,0,0,0,1] * ... - Mats Granvik, Gary W. Adamson, Aug 07 2009

Examples

			a(4) = 3 because we have [4],[3,1] and [1,1,1,1] (the partitions [2,2] and [2,1,1] do not qualify since each of them has a doubleton).
		

Crossrefs

Programs

  • Maple
    h:=product((1-x^(2*j)+x^(3*j))/(1-x^j),j=1..60): hser:=series(h,x=0,60): seq(coeff(hser,x,n),n=0..56);
  • Mathematica
    nn=48;CoefficientList[Series[Product[1/(1-x^i)-x^(2i),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 30 2013 *)

Formula

G.f.: Product_{j>=1} (1-x^(2j)+x^(3j))/(1-x^j).
G.f. for the number of partitions of n having no part that appears exactly m times is Product_{k>0} (1/(1-x^k)-x^(m*k)).
a(n) = A000041(n) - A183559(n) = A183568(n,0) - A183568(n,2). - Alois P. Heinz, Oct 09 2011
a(n) ~ exp(sqrt((Pi^2/3 + 4*r)*n)) * sqrt(Pi^2/6 + 2*r) / (4*Pi*n), where r = Integral_{x=0..oo} log(1 + exp(-x) - exp(-2*x) + exp(-4*x)) dx = 0.64673501839556449802623523266221107725058748270577037891948... - Vaclav Kotesovec, Jun 12 2025

A116646 Number of doubletons in all partitions of n. By a doubleton in a partition we mean an occurrence of a part exactly twice (the partition [4,(3,3),2,2,2,(1,1)] has two doubletons, shown between parentheses).

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 4, 5, 10, 11, 20, 25, 38, 49, 73, 91, 131, 167, 228, 291, 392, 493, 653, 822, 1065, 1336, 1714, 2131, 2706, 3354, 4209, 5193, 6471, 7934, 9817, 11990, 14725, 17909, 21875, 26477, 32172, 38797, 46893, 56339, 67804, 81147, 97260, 116017
Offset: 0

Views

Author

Emeric Deutsch, Feb 20 2006

Keywords

Comments

a(n) = (the number of 2's in all partitions of n) - (the number of 3's in all partitions of n). - Gregory L. Simay, Jul 28 2020

Examples

			a(6) = 4 because in the partitions of 6, namely [6],[5,1],[4,2],[4,(1,1)],[(3,3)],[3,2,1],[3,1,1,1],[2,2,2],[(2,2),(1,1)],[2,1,1,1,1] and [1,1,1,1,1,1], we have a total of 4 doubletons (shown between parentheses).
		

Crossrefs

Cf. A116644. Column k=2 of A197126.

Programs

  • Maple
    f:= x^2/(1+x)/(1-x^3)/product(1-x^j, j=1..70): fser:= series(f,x=0,70): seq(coeff(fser,x,n), n=0..55);
  • Mathematica
    nmax = 50; CoefficientList[Series[x^2/((1+x)*(1-x^3)) * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
    Table[Sum[PartitionsP[n-6*m-2] - PartitionsP[n-6*m-3] + PartitionsP[n-6*m-4], {m, 0, Floor[n/6]}], {n, 0, 50}] (* Vaclav Kotesovec, Mar 07 2016 *)

Formula

G.f.: x^2 / ((1+x)*(1-x^3)*(Product_{j>=1} 1-x^j)).
a(n) = Sum_{k>=0} k * A116644(n,k).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (3*2^(5/2)*Pi*sqrt(n)). - Vaclav Kotesovec, Mar 07 2016

A118806 Triangle read by rows: T(n,k) is the number of partitions of n having k parts of multiplicity 3 (n,k>=0).

Original entry on oeis.org

1, 1, 2, 2, 1, 5, 6, 1, 9, 2, 12, 3, 19, 3, 24, 5, 1, 34, 8, 43, 13, 62, 13, 2, 77, 23, 1, 105, 28, 2, 132, 40, 4, 177, 49, 5, 220, 71, 6, 287, 89, 8, 1, 356, 123, 11, 462, 147, 18, 570, 198, 23, 1, 723, 249, 29, 1, 888, 329, 37, 1, 1121, 400, 50, 4, 1370, 518, 69, 1, 1705, 642, 85
Offset: 0

Views

Author

Emeric Deutsch, Apr 29 2006

Keywords

Comments

T(n,0)=A118807(n). T(n,1)=A118808(n). Row sums yield the partition numbers (A000041). Sum(k*T(n,k), k>=0)=A117524(n) (n>=1).

Examples

			T(12,2) = 2 because we have [3,3,3,1,1,1] and [3,2,2,2,1,1,1].
Triangle starts:
1;
1;
2;
2,  1;
5;
6,  1;
9,  2;
12, 3;
		

Crossrefs

Programs

  • Maple
    g:=product(1+x^j+x^(2*j)+t*x^(3*j)+x^(4*j)/(1-x^j),j=1..35): gser:=simplify(series(g,x=0,35)): P[0]:=1: for n from 1 to 30 do P[n]:=coeff(gser,x^n) od: for n from 0 to 30 do seq(coeff(P[n],t,j),j=0..degree(P[n])) od; # sequence given in triangular form

Formula

G.f.: product(1+x^j+x^(2j)+tx^(3j)+x^(4j)/(1-x^j), j=1..infinity).
Showing 1-3 of 3 results.