A144995
Denominators of an Egyptian fraction for 1/sqrt(19) = 0.22941573387...
Original entry on oeis.org
5, 34, 251943, 77358462192, 329674933038929584801859, 118413558884112868600621270078763367701114576955, 19756890296133318743365962162537257145612343071078668201479848363416263252859088735079245625303
Offset: 1
Cf.
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003.
-
a = {}; k = N[1/Sqrt[19], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (* Artur Jasinski *)
A144996
Denominators of an Egyptian fraction for 1/Sqrt[21] = 0.21821789...
Original entry on oeis.org
5, 55, 27723, 1084714750, 2579620657453546201, 120904392155429552198250382953194665437, 29567118984689950525496948880094499522270777838300280083816338513462653571335
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[21], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A144997
Denominators of an Egyptian fraction for 1/Sqrt[22] = 0.21320071635561...
Original entry on oeis.org
5, 76, 23353, 1760750176, 11091689481099523647, 624609172612912277752469960143750195996, 1154850060305896828989836424061308107033056930212520517493782451684269172225140
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[22], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A144998
Denominators of an Egyptian fraction for 1/Sqrt[23] = 0.208514414...
Original entry on oeis.org
5, 118, 25102, 3098488794, 14128130137829281462, 485584015670165519973653386760357384912, 314540562973936255020142367073783456663449048259761865641894253491267983125499
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[23], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A144999
Denominators of an Egyptian fraction for 1/Sqrt[24] = 0.20412414523...
Original entry on oeis.org
5, 243, 112122, 26152629083, 896398925366011889258, 3015244976414322457555463218875802090369767, 64507244652051292999487806064926450248354528876835935231409173161547519285211444127477
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[24], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A145000
Denominators of an Egyptian fraction for 1/Sqrt[26] = 0.196116135138...
Original entry on oeis.org
6, 34, 26523, 1562387946, 2711148268367282801, 12495200597418585355327760706720583332, 249241682973403163668428197861526798556923221288701528163601730404432403391
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[26], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A145001
Denominators of an Egyptian fraction for 1/Sqrt[27] = 0.19245...
Original entry on oeis.org
6, 39, 7023, 123003383, 30009972034709604, 2284252506432349791885755473056239, 9742053754355575036462674739863470880211838469604940624314922115462
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[27], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A145002
Denominators of an Egyptian fraction for 1/Sqrt[28] = 0.1889822365...
Original entry on oeis.org
6, 45, 10713, 324564970, 180179551708668257, 66100039883449216745724149409859980, 5970964373869392740489950614747811004676487208587055130790649750452409
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[28], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A157718
Greedy Egyptian fraction expansion of log(3).
Original entry on oeis.org
1, 11, 130, 91827, 42593758221, 2068726045016880942060, 20697114911379630588051784011292634933847536, 832769470129253476302780470023395858447487389073547955500158020204885523374048803963217
Offset: 0
log(3) = Sum_{n>=0} 1/a(n) = 1/1 + 1/11 + 1/130 + 1/91827 + 1/42593758221 + ...
-
x=log(3); for (k=1, 8, d=ceil(1/x); x=x-1/d; print(d,","))