1, 1, -1, 1, -1, -1, 1, -1, -1, 2, 1, -1, -1, 2, 1, 1, -1, -1, 2, -1, -3, 1, -1, -1, 2, -1, 2, 1, 1, -1, -1, 2, -1, 0, -3, 1, 1, -1, -1, 2, -1, 0, 2, 1, -3, 1, -1, -1, 2, -1, 0, 0, -3, 1, -1, 1, -1, -1, 2, -1, 0, 0, 2, 1, -3, 9, 1, -1, -1, 2, -1, 0, 0, 0, -3, 1, 3, -4, 1, -1, -1, 2, -1, 0, 0, 0, 2, 1, -3, -5, -6, 1, -1, -1, 2, -1, 0, 0, 0, 0, -3, 1, 3, 10, 5
Offset: 1
The first 4 triangle rows of T(2,1).
1 -1
-1 2 1 -3 1
1 -3 -1 9 -4 -6 5 -1
-1 4 0 -17 14 21 -28 -2 15 -7 1
The first 3 triangle rows of T(2,2).
1 -1
-1 2 -1 2 -3 1
1 -3 3 -5 10 -8 6 -8 5 -1
The first 3 triangle rows of T(2,3).
1 -1
-1 2 -1 0 2 -3 1
1 -3 3 -1 -4 10 -8 2 4 -8 5 -1
The first 3 triangle rows of T(3,3).
1 -1
-2 4 -2 0 2 -3 1
4 -12 12 -4 -8 20 -16 4 4 -8 5 1
The first 67 values (G(1)..G(67)) of the k=15th member of the family of recursive G sequences, with m=2, t=1, laid out as an initial row of 15 numbers followed by 4 rows of 13 members. As can be seen, the initial segments of lengths 2, 5, 8, 11 of rows 2 through 5 respectively are 1, -1 (2nd row), -1, 2, 1, -3, 1 (3rd row), 1, -3, -1, 9, -4, -6, 5, -1 (4th row), -1, 4, 0, -17, 14, 21, -28, -2, 15, -7, 1 (5th row) and these are identical to the first 4 triangle rows in the t=1, m=2 case confirming the empirical observation that both the triangle recursion and the family of G sequences give rise to the same triangles.
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 0 0 0 0 0 0 0 0 0 0 0
-1 2 1 -3 1 0 0 0 0 0 0 0 0
1 -3 -1 9 -4 -6 5 -1 0 0 0 0 0
-1 4 0 -17 14 21 -28 -2 15 -7 1 0 0
For m=2, the first 16 members of the first 14 triangles (t=1, t=2, ..., t=14) with each triangle laid out row by row. The ascending diagonals in the data section can be produced from this array.
t\n | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-----+----------------------------------------------
t=1 | 1 -1 -1 2 1 -3 1 1 -3 -1 9 -4 -6 5 -1 -1
t=2 | 1 -1 -1 2 -1 2 -3 1 1 -3 3 -5 10 -8 6 -8
t=3 | 1 -1 -1 2 -1 0 2 -3 1 1 -3 3 -1 -4 10 -8
t=4 | 1 -1 -1 2 -1 0 0 2 -3 1 1 -3 3 -1 0 -4
t=5 | 1 -1 -1 2 -1 0 0 0 2 -3 1 1 -3 3 -1 0
t=6 | 1 -1 -1 2 -1 0 0 0 0 2 -3 1 1 -3 3 -1
t=7 | 1 -1 -1 2 -1 0 0 0 0 0 2 -3 1 1 -3 3
t=8 | 1 -1 -1 2 -1 0 0 0 0 0 0 2 -3 1 1 -3
t=9 | 1 -1 -1 2 -1 0 0 0 0 0 0 0 2 -3 1 1
t=10 | 1 -1 -1 2 -1 0 0 0 0 0 0 0 0 2 -3 1
t=11 | 1 -1 -1 2 -1 0 0 0 0 0 0 0 0 0 2 -3
t=12 | 1 -1 -1 2 -1 0 0 0 0 0 0 0 0 0 0 2
t=13 | 1 -1 -1 2 -1 0 0 0 0 0 0 0 0 0 0 0
t=14 | 1 -1 -1 2 -1 0 0 0 0 0 0 0 0 0 0 0
For m=3, the first 16 members of the first 14 triangles (t=1, t=2, ..., t=14) with each triangle laid out row by row.
t\n | 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-----+----------------------------------------------
t=1 | 1 -1 -2 4 0 -3 1 4 -12 4 16 -12 -4 5
t=2 | 1 -1 -2 4 -2 2 -3 1 4 -12 12 -12 20 -16
t=3 | 1 -1 -2 4 -2 0 2 -3 1 4 -12 12 -4 -8
t=4 | 1 -1 -2 4 -2 0 0 2 -3 1 4 -12 12 -4
t=5 | 1 -1 -2 4 -2 0 0 0 2 -3 1 4 -12 12
t=6 | 1 -1 -2 4 -2 0 0 0 0 2 -3 1 4 -12
t=7 | 1 -1 -2 4 -2 0 0 0 0 0 2 -3 1 4
t=8 | 1 -1 -2 4 -2 0 0 0 0 0 0 2 -3 1
t=9 | 1 -1 -2 4 -2 0 0 0 0 0 0 0 2 -3
t=10 | 1 -1 -2 4 -2 0 0 0 0 0 0 0 0 2
t=11 | 1 -1 -2 4 -2 0 0 0 0 0 0 0 0 0
t=12 | 1 -1 -2 4 -2 0 0 0 0 0 0 0 0 0
t=13 | 1 -1 -2 4 -2 0 0 0 0 0 0 0 0 0
t=14 | 1 -1 -2 4 -2 0 0 0 0 0 0 0 0 0
25 values, (K(0)..K(-24)) laid out in rows of 5, for the nonpositive indices of the Generalized Fibonacci numbers of order 5.
0 -2 1 1 1
-1 -4 4 1 1
-3 -7 12 -2 1
-7 -11 31 -16 4
Comments