A119297
Total number of 6's digits in the first 10^n primes.
Original entry on oeis.org
0, 10, 315, 3824, 47269, 560677, 7079879, 79433407, 887292243, 9778050835, 110518283071, 1198946387631
Offset: 1
At a(2)=10 there are 10 6's digits in the first 10^2 primes.
-
A119297 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("6",convert(ithprime(k),string))]): od: return s: end: seq(A119297(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Count[IntegerDigits[Prime[Range[10^n]]], 6, 2], {n, 6}] (* Robert Price, May 02 2019 *)
A119298
Total number of 7's digits in the first 10^n primes.
Original entry on oeis.org
2, 34, 551, 6338, 72319, 809360, 9543704, 104376285, 1136782466, 12273965395, 134080968533, 1448607569210
Offset: 1
At a(1)=2 there are 2 7's digits in the first 10^1 primes.
-
A119298 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("7",convert(ithprime(k),string))]): od: return s: end: seq(A119298(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Count[IntegerDigits[Prime[Range[10^n]]], 7, 2], {n, 6}] (* Robert Price, May 02 2019 *)
Table[Total[Table[DigitCount[p,10,7],{p,Prime[Range[10^n]]}]],{n,7}] (* The program generates the first seven terms of the sequence. *) (* Harvey P. Dale, Dec 10 2024 *)
A231591
Total number of 2's digits in primes less than 10^n.
Original entry on oeis.org
1, 3, 32, 391, 3906, 39572, 400626, 4047829, 40794211, 410514052, 4126066282, 41436122092, 415853103290, 4171375888398
Offset: 1
a(2)=3, since there are 3 2's in primes less than 100. Namely: 2, 23, 29.
-
Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 2, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)
A231592
Total number of 3's digits in primes less than 10^n.
Original entry on oeis.org
1, 9, 75, 677, 6229, 58770, 564650, 5472472, 53396224, 523382007, 5148387363, 50778098799, 501864775685, 4968288427006
Offset: 1
a(2)=9, since there are 9 3's in primes less than 100. Namely: 3, 13, 23, 31, 37, 43, 53, 73, 83.
-
Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 3, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)
A231593
Total number of 4's digits in primes less than 10^n.
Original entry on oeis.org
0, 3, 34, 360, 3772, 39006, 397474, 4022501, 40604951, 408986159, 4113511677, 41331763006, 414971464358, 4163826451096
Offset: 1
a(2)=3, since there are 3 4's in primes less than 100. Namely: 41, 43, 47.
-
Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 4, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)
A231594
Total number of 5's digits in primes less than 10^n.
Original entry on oeis.org
1, 3, 33, 360, 3816, 38911, 396016, 4015732, 40543671, 408462140, 4109293287, 41296082801, 414669334188, 4161237526152
Offset: 1
a(2)=3, since there are 3 5's in primes less than 100. Namely: 5, 53, 59.
-
Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 5, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)
A231595
Total number of 6's digits in primes less than 10^n.
Original entry on oeis.org
0, 2, 33, 369, 3741, 38714, 395621, 4007705, 40484195, 408035120, 4105718243, 41266320918, 414416274953, 4159068898063
Offset: 1
a(2)=2, since there are 2 6's in primes less than 100. Namely: 61, 67.
-
Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 6, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)
A231596
Total number of 7's digits in primes less than 10^n.
Original entry on oeis.org
1, 9, 78, 652, 6172, 58327, 560506, 5443074, 53152746, 521422184, 5132090751, 50642752951, 500714890907, 4958432528817
Offset: 1
a(2)=9, since there are 9 7's in primes less than 100. Namely: 7, 17, 37, 47, 67, 71, 73, 79, 97.
-
Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 7, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)
A231597
Total number of 8's digits in primes less than 10^n.
Original entry on oeis.org
0, 2, 30, 351, 3690, 38541, 394398, 3998411, 40399778, 407316676, 4099892369, 41217744252, 414006129652, 4155543234392
Offset: 1
a(2)=2, since there are 2 8's in primes less than 100. Namely: 83, 89.
-
Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 8, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)