A119296
Total number of 5's digits in the first 10^n primes.
Original entry on oeis.org
1, 15, 327, 3904, 47525, 590450, 7087898, 79504457, 887852429, 9862623240, 110885914721, 1199346258292
Offset: 1
At a(2)=15 there are 15 5's digits in the first 10^2 primes.
-
A119296 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("5",convert(ithprime(k),string))]): od: return s: end: seq(A119296(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Total[DigitCount[#, 10, 5]&/@Prime[Range[10^n]]], {n, 7}] (* Vincenzo Librandi, Sep 09 2015 *)
A119299
Total number of 8's digits in the first 10^n primes.
Original entry on oeis.org
0, 8, 195, 3763, 47174, 558842, 6541723, 79273100, 882188472, 9770202402, 106927984586, 1198303968170
Offset: 1
At a(2)=8 there are 8 8's digits in the first 10^2 primes.
-
A119299 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("8",convert(ithprime(k),string))]): od: return s: end: seq(A119299(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Total[DigitCount[#,10,8]&/@Prime[Range[10^n]]],{n,7}] (* Harvey P. Dale, Apr 05 2011 *)
A119297
Total number of 6's digits in the first 10^n primes.
Original entry on oeis.org
0, 10, 315, 3824, 47269, 560677, 7079879, 79433407, 887292243, 9778050835, 110518283071, 1198946387631
Offset: 1
At a(2)=10 there are 10 6's digits in the first 10^2 primes.
-
A119297 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("6",convert(ithprime(k),string))]): od: return s: end: seq(A119297(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Count[IntegerDigits[Prime[Range[10^n]]], 6, 2], {n, 6}] (* Robert Price, May 02 2019 *)
Showing 1-3 of 3 results.