cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A119300 Total number of 9's digits in the first 10^n primes.

Original entry on oeis.org

2, 33, 431, 6318, 72062, 806674, 9004550, 104220797, 1131743629, 12266783460, 131900123107, 1447662128808
Offset: 1

Views

Author

Enoch Haga, May 13 2006

Keywords

Examples

			At a(3)=431 there are 431 9's digits in the first 10^3 = 1000 primes.
		

Crossrefs

Programs

  • Maple
    A119300 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("9",convert(ithprime(k),string))]): od: return s: end: seq(A119300(n),n=1..4); # Nathaniel Johnston, May 09 2011
  • Mathematica
    cnt=0; k=0; Table[While[k++; cnt=cnt+DigitCount[Prime[k], 10, 9];k < 10^n]; cnt, {n, 5}] (* T. D. Noe, May 10 2011 *)

Extensions

a(8)-a(11) from Robert Price, Nov 05 2013
a(12) from Marek Hubal, Mar 04 2019

A119296 Total number of 5's digits in the first 10^n primes.

Original entry on oeis.org

1, 15, 327, 3904, 47525, 590450, 7087898, 79504457, 887852429, 9862623240, 110885914721, 1199346258292
Offset: 1

Views

Author

Enoch Haga, May 13 2006

Keywords

Examples

			At a(2)=15 there are 15 5's digits in the first 10^2 primes.
		

Crossrefs

Programs

  • Maple
    A119296 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("5",convert(ithprime(k),string))]): od: return s: end: seq(A119296(n),n=1..4); # Nathaniel Johnston, May 09 2011
  • Mathematica
    Table[Total[DigitCount[#, 10, 5]&/@Prime[Range[10^n]]], {n, 7}] (* Vincenzo Librandi, Sep 09 2015 *)

Extensions

Offset changed from 0 to 1 by Nathaniel Johnston, May 09 2011
a(8)-a(11) from Robert Price, Nov 05 2013
a(12) from Marek Hubal, Mar 04 2019

A119297 Total number of 6's digits in the first 10^n primes.

Original entry on oeis.org

0, 10, 315, 3824, 47269, 560677, 7079879, 79433407, 887292243, 9778050835, 110518283071, 1198946387631
Offset: 1

Views

Author

Enoch Haga, May 13 2006

Keywords

Examples

			At a(2)=10 there are 10 6's digits in the first 10^2 primes.
		

Crossrefs

Programs

  • Maple
    A119297 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("6",convert(ithprime(k),string))]): od: return s: end: seq(A119297(n),n=1..4); # Nathaniel Johnston, May 09 2011
  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[10^n]]], 6, 2], {n, 6}] (* Robert Price, May 02 2019 *)

Extensions

Offset changed from 0 to 1 by Nathaniel Johnston, May 09 2011
a(8)-a(11) from Robert Price, Nov 05 2013
a(12) from Marek Hubal, Mar 04 2019

A119298 Total number of 7's digits in the first 10^n primes.

Original entry on oeis.org

2, 34, 551, 6338, 72319, 809360, 9543704, 104376285, 1136782466, 12273965395, 134080968533, 1448607569210
Offset: 1

Views

Author

Enoch Haga, May 13 2006

Keywords

Examples

			At a(1)=2 there are 2 7's digits in the first 10^1 primes.
		

Crossrefs

Programs

  • Maple
    A119298 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("7",convert(ithprime(k),string))]): od: return s: end: seq(A119298(n),n=1..4); # Nathaniel Johnston, May 09 2011
  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[10^n]]], 7, 2], {n, 6}] (* Robert Price, May 02 2019 *)
    Table[Total[Table[DigitCount[p,10,7],{p,Prime[Range[10^n]]}]],{n,7}] (* The program generates the first seven terms of the sequence. *) (* Harvey P. Dale, Dec 10 2024 *)

Extensions

Offset changed from 0 to 1 by Nathaniel Johnston, May 09 2011
a(8)-a(11) from Robert Price, Nov 05 2013
a(12) from Marek Hubal, Mar 04 2019
Showing 1-4 of 4 results.