A119295
Total number of 4's digits in the first 10^n primes.
Original entry on oeis.org
0, 27, 311, 3919, 47647, 628061, 7098709, 79587350, 888504625, 10169426048, 110936566287, 1199775766812
Offset: 1
At a(2)=27 there are 27 4's digits in the first 10^2 primes.
-
A119295 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("4",convert(ithprime(k),string))]): od: return s: end: seq(A119295(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Accumulate@Table[c = 0; For[i = 10^(n - 1) + 1, i <= 10^n, i++, c += Count[IntegerDigits[Prime[i]], 4]]; c, {n, 6}] (* Robert Price, Jun 09 2019 *)
A119299
Total number of 8's digits in the first 10^n primes.
Original entry on oeis.org
0, 8, 195, 3763, 47174, 558842, 6541723, 79273100, 882188472, 9770202402, 106927984586, 1198303968170
Offset: 1
At a(2)=8 there are 8 8's digits in the first 10^2 primes.
-
A119299 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("8",convert(ithprime(k),string))]): od: return s: end: seq(A119299(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Total[DigitCount[#,10,8]&/@Prime[Range[10^n]]],{n,7}] (* Harvey P. Dale, Apr 05 2011 *)
A119297
Total number of 6's digits in the first 10^n primes.
Original entry on oeis.org
0, 10, 315, 3824, 47269, 560677, 7079879, 79433407, 887292243, 9778050835, 110518283071, 1198946387631
Offset: 1
At a(2)=10 there are 10 6's digits in the first 10^2 primes.
-
A119297 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("6",convert(ithprime(k),string))]): od: return s: end: seq(A119297(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Count[IntegerDigits[Prime[Range[10^n]]], 6, 2], {n, 6}] (* Robert Price, May 02 2019 *)
A119298
Total number of 7's digits in the first 10^n primes.
Original entry on oeis.org
2, 34, 551, 6338, 72319, 809360, 9543704, 104376285, 1136782466, 12273965395, 134080968533, 1448607569210
Offset: 1
At a(1)=2 there are 2 7's digits in the first 10^1 primes.
-
A119298 := proc(n) option remember: local k,s,lim: if(n=0)then return 0:fi: lim:=10^n: s:=procname(n-1): for k from 10^(n-1)+1 to lim do s:=s+nops([SearchAll("7",convert(ithprime(k),string))]): od: return s: end: seq(A119298(n),n=1..4); # Nathaniel Johnston, May 09 2011
-
Table[Count[IntegerDigits[Prime[Range[10^n]]], 7, 2], {n, 6}] (* Robert Price, May 02 2019 *)
Table[Total[Table[DigitCount[p,10,7],{p,Prime[Range[10^n]]}]],{n,7}] (* The program generates the first seven terms of the sequence. *) (* Harvey P. Dale, Dec 10 2024 *)
Showing 1-4 of 4 results.