cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A072507 Smallest start of n consecutive integers with n divisors, or 0 if no such number exists.

Original entry on oeis.org

1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 120402988681658048433948, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amarnath Murthy, Jul 22 2002

Keywords

Comments

a(3) = 0 because only squares of primes have three divisors.
From T. D. Noe, Dec 04 2004: (Start)
"Note that a(n)=0 for odd n > 1 because a number has an odd number of divisors only if it is a square and there are no consecutive positive squares. Also, a(4)=0 because one of four consecutive numbers would be a multiple of 4 and have 4 divisors only if it is 8.
"Similarly, a(6)=0 because one of six consecutive number would be a multiple of 6 and the only multiples of 6 having 6 divisors are 12 and 18. For a(8), one of the eight consecutive numbers must be an odd multiple of 4, which cannot have 8 divisors. Interestingly, the 7 consecutive numbers starting at 171893 have 8 divisors.
"Similarly, for a(10), one of the ten consecutive numbers must be an odd multiple of 4, which would have 3x divisors. It is also easy to verify that a(n)=0 for n=14,16,20,22,26,28,32,34,... It seems likely that a(n)=0 for n>2." (End)
This sequence is zero for all but finitely many n. If k = floor(log_2(n)), there must be at least one term exactly divisible by 2^j for any j < k; hence the number of divisors must be divisible by j+1, or more generally by lcm_{i<=k} i. The only values of n divisible by this lcm are 1,2,3,4,6,12,24,60 and 120. For example, for n=30, there must be an element divisible by exactly 8, so its number of divisors is divisible by 4. For n = 60, there must by two numbers 8k and 8(k+2) with k odd; then k and k+2 must each have 15 divisors, making them squares. Together with the comments from T. D. Noe, this leaves only 12, 24 and 120 as open questions. - Franklin T. Adams-Watters, Jul 14 2006
If a(120) = k > 0, then a) k+i cannot be 64 (mod 128) since 7 would divide tau(k+i); b) k+i cannot be 120 (mod 144) since then we'd need k+i = 24x^2 with x==2 (mod 3); c) k+i cannot be 168 (mod 288) since then we'd need k+i = 24x^2 with x==3 (mod 4). Hence no possibility (mod 288) exists, and a(120) = 0. - Hugo van der Sanden, Jan 12 2022
a(12) <= 247239052981730986799644. - Hugo van der Sanden, Apr 25 2022

Examples

			a(2) = 2 as 2 and 3 are the first (by chance the only) set of two consecutive integers with two divisors.
		

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Springer-Verlag, Third Edition, 2004, B12.

Crossrefs

Cf. A000005 (number of divisors of n).
Cf. A006558 (start of first run of n consecutive integers with same number of divisors).
Cf. A119479.

Extensions

More terms from T. D. Noe, Dec 04 2004
a(12) to a(23) from Hugo van der Sanden, Dec 18 2022

A319045 Length of longest run of consecutive odd numbers having exactly n divisors.

Original entry on oeis.org

1, 3, 1, 8, 1, 8, 1, 17, 1
Offset: 1

Views

Author

Jon E. Schoenfield, Dec 22 2018

Keywords

Comments

a(n)=1 for n odd, since every number with an odd number of divisors is a square, and no two squares are consecutive odd numbers.
The start of the first run of exactly k consecutive odd numbers having exactly n divisors is A319046(n,k).
From David Wasserman, May 04 2019: (Start)
7 <= a(10) <= 8.
14 <= a(12) <= 59. Dickson's conjecture implies a(12) >= 39. Schinzel's Hypothesis H implies a(12) >= 41. (End)

Examples

			From _David Wasserman_, May 04 2019: (Start)
A run of 17 consecutive odd numbers with 8 divisors begins at 237805775327, so a(8) >= 17; a run of 18 or more consecutive odd numbers would include at least two that are multiples of 9, and every multiple of 9 having 8 divisors is also a multiple of 27, but the two multiples of 9 cannot both be multiples of 27, so a(8) = 17.
A run of 5 consecutive odd numbers with 14 divisors begins at 10943266106145622193005970311, so a(14) >= 5. A run of 6 consecutive odd numbers with 14 divisors would include at least two that are multiples of 3, and these two would differ by 6. These must be 3^13, 3^6*p for p prime > 3, or 3*p^6 for p prime > 3. But 3*p^6 = 3 (mod 27), while 3^13 and 3^6*p = 0 (mod 27), so no two of these can differ by 6. Therefore no such run exists, and a(14) = 5. (End)
		

Crossrefs

Cf. A119479 (analog for consecutive integers), A319046.

Extensions

a(6)-a(9) from David Wasserman, Feb 07 2019

A325116 Length of longest run of consecutive even integers having exactly n divisors.

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1
Offset: 1

Views

Author

David Wasserman, Mar 27 2019

Keywords

Comments

The start of the first run of exactly k consecutive even integers having exactly n divisors is A325117(n,k).
If m does not divide n, then a(n) < 2^(m-1). Proof: 2^(m-1) consecutive even integers must include one congruent to 2^(m-1) mod 2^m, and the number of divisors of this one is a multiple of m.
For m > 2, if 2*(m-1) does not divide n, then a(n) < 2^(m-1). Proof: 2^(m-1) consecutive even integers must include two congruent to 2^(m-2) mod 2^(m-1). These are 2^(m-2)*x and 2^(m-2)*(x+2) for some odd x, and x and x+2 each have n/(m-1) divisors. If 2*(m-1) does not divide n, then n/(m-1) is odd. Any number with an odd number of divisors is a square, so x and x+2 are squares, but squares cannot differ by 2.
14 <= a(24) <= 15. Dickson's conjecture implies a(24)=15.

Crossrefs

Cf. A119479 (with consecutive integers), A319045 (with consecutive odd integers).
Cf. A325117.

A323743 Table read by rows: row n lists the numbers k for which there exist only finitely many runs of n consecutive integers whose number-of-divisors function sums to k.

Original entry on oeis.org

1, 3, 4, 5, 5, 7, 8, 9, 8, 9, 11, 12, 13, 14, 15, 10, 13, 15, 17, 18, 19, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 16, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 20, 22, 24, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39
Offset: 1

Views

Author

Jon E. Schoenfield, Apr 02 2019

Keywords

Comments

Row n lists the numbers k such that
0 < |{m : Sum_j={m..m+n-1} tau(j) = k}| < infinity
where tau(j) = A000005(j) is the number of divisors of j.

Examples

			There is only one number with exactly 1 divisor (namely, k=1), but there are infinitely many numbers with j divisors for every j >= 2, so row 1 consists only of the single term 1.
The sequence of values tau(k) for k >= 1 is A000005, which begins 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, ..., from which the sums of two consecutive terms are 1+2=3, 2+2=4, 2+3=5, 3+2=5, 2+4=6, 4+2=6, 2+4=6, 4+3=7, 3+4=7, ...; no number j < 3 appears as such a sum, every j >= 6 appears infinitely many times as such a sum, and each j in {3,4,5} appears as such a sum only finitely many times, so row 2 is {3, 4, 5}.
Row 3 does not contain 6 as a term because there exists no run of 3 consecutive numbers whose sum of tau values is exactly 6.
The first six rows of the table are as follows:
  row 1: {1};
  row 2: {3, 4, 5};
  row 3: {5, 7, 8, 9};
  row 4: {8, 9, 11, 12, 13, 14, 15};
  row 5: {10, 13, 15, 17, 18, 19};
  row 6: {14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27}.
		

Crossrefs

Previous Showing 11-14 of 14 results.