A072507
Smallest start of n consecutive integers with n divisors, or 0 if no such number exists.
Original entry on oeis.org
1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 120402988681658048433948, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
a(2) = 2 as 2 and 3 are the first (by chance the only) set of two consecutive integers with two divisors.
- R. K. Guy, Unsolved Problems in Theory of Numbers, Springer-Verlag, Third Edition, 2004, B12.
Cf.
A000005 (number of divisors of n).
Cf.
A006558 (start of first run of n consecutive integers with same number of divisors).
A319045
Length of longest run of consecutive odd numbers having exactly n divisors.
Original entry on oeis.org
1, 3, 1, 8, 1, 8, 1, 17, 1
Offset: 1
From _David Wasserman_, May 04 2019: (Start)
A run of 17 consecutive odd numbers with 8 divisors begins at 237805775327, so a(8) >= 17; a run of 18 or more consecutive odd numbers would include at least two that are multiples of 9, and every multiple of 9 having 8 divisors is also a multiple of 27, but the two multiples of 9 cannot both be multiples of 27, so a(8) = 17.
A run of 5 consecutive odd numbers with 14 divisors begins at 10943266106145622193005970311, so a(14) >= 5. A run of 6 consecutive odd numbers with 14 divisors would include at least two that are multiples of 3, and these two would differ by 6. These must be 3^13, 3^6*p for p prime > 3, or 3*p^6 for p prime > 3. But 3*p^6 = 3 (mod 27), while 3^13 and 3^6*p = 0 (mod 27), so no two of these can differ by 6. Therefore no such run exists, and a(14) = 5. (End)
A325116
Length of longest run of consecutive even integers having exactly n divisors.
Original entry on oeis.org
0, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1
Offset: 1
Cf.
A119479 (with consecutive integers),
A319045 (with consecutive odd integers).
A323743
Table read by rows: row n lists the numbers k for which there exist only finitely many runs of n consecutive integers whose number-of-divisors function sums to k.
Original entry on oeis.org
1, 3, 4, 5, 5, 7, 8, 9, 8, 9, 11, 12, 13, 14, 15, 10, 13, 15, 17, 18, 19, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 16, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 20, 22, 24, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39
Offset: 1
There is only one number with exactly 1 divisor (namely, k=1), but there are infinitely many numbers with j divisors for every j >= 2, so row 1 consists only of the single term 1.
The sequence of values tau(k) for k >= 1 is A000005, which begins 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, ..., from which the sums of two consecutive terms are 1+2=3, 2+2=4, 2+3=5, 3+2=5, 2+4=6, 4+2=6, 2+4=6, 4+3=7, 3+4=7, ...; no number j < 3 appears as such a sum, every j >= 6 appears infinitely many times as such a sum, and each j in {3,4,5} appears as such a sum only finitely many times, so row 2 is {3, 4, 5}.
Row 3 does not contain 6 as a term because there exists no run of 3 consecutive numbers whose sum of tau values is exactly 6.
The first six rows of the table are as follows:
row 1: {1};
row 2: {3, 4, 5};
row 3: {5, 7, 8, 9};
row 4: {8, 9, 11, 12, 13, 14, 15};
row 5: {10, 13, 15, 17, 18, 19};
row 6: {14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27}.
Cf.
A000005,
A005237,
A006558,
A048892,
A072507,
A100366,
A119479,
A141621,
A284596,
A284597,
A292580,
A319037,
A319045,
A319046.
Comments