cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A214127 a(2n) = a(n-1) + a(n) and a(2n+1) = a(n+1) for n>=1, with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 3, 3, 5, 3, 6, 5, 8, 3, 8, 6, 9, 5, 11, 8, 13, 3, 11, 8, 11, 6, 14, 9, 15, 5, 14, 11, 16, 8, 19, 13, 21, 3, 16, 11, 14, 8, 19, 11, 19, 6, 17, 14, 20, 9, 23, 15, 24, 5, 20, 14, 19, 11, 25, 16, 27, 8, 24, 19, 27, 13, 32, 21, 34, 3, 24, 16, 19, 11, 27, 14, 25
Offset: 0

Views

Author

Alex Ratushnyak, Jul 04 2012

Keywords

Crossrefs

Cf. A120562: same formula, seed {0,1}, first term removed.
Cf. A082498: same formula, seed {1,0}, first term removed.
Cf. A214126: same formula, seed {1,1}.

Programs

  • Mathematica
    t = {1, 2}; Do[If[EvenQ[n], AppendTo[t, t[[n/2]] + t[[n/2 + 1]]], AppendTo[t, t[[(n + 3)/2]]]], {n, 2, 100}]; t (* T. D. Noe, Jul 11 2012 *)
  • Python
    a = [1]*(77*2)
    a[1]=2
    for n in range(1,77):
        a[2*n  ]=a[n-1]+a[n]
        a[2*n+1]=a[n+1]
        print(str(a[n-1]),end=',')

A309047 Expansion of Product_{k>=0} (1 + x^(2^k) - x^(3*2^k)).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, -1, 1, 1, 0, -1, 0, 0, -1, -1, 1, 2, 1, 0, 0, -1, -1, -1, 0, 1, 0, 0, -1, -1, -1, 0, 1, 2, 2, 1, 1, -1, 0, -1, 0, 0, -1, -1, -1, 0, -1, 0, 0, 1, 1, 1, 0, -1, 0, 0, -1, -1, -1, 0, -1, 0, 0, 1, 1, 1, 2, 1, 2, 0, 1, -1, 1, 0, -1, -2, 0, 1, -1, -1, 0, 1, 0, 0, -1, -1, -1, 0, -1, 0, 0, 1, -1, -1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, -1, -1, -1, 0, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 109; CoefficientList[Series[Product[(1 + x^(2^k) - x^(3 2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
    nmax = 109; A[] = 1; Do[A[x] = (1 + x - x^3) A[x^2] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = 1; a[n_] := If[EvenQ[n], a[n/2], a[(n - 1)/2] - a[(n - 3)/2]]; Table[a[n], {n, 0, 109}]

Formula

G.f. A(x) satisfies: A(x) = (1 + x - x^3) * A(x^2).
a(0) = a(1) = 1; a(2*n) = a(n), a(2*n+1) = a(n) - a(n-1).
Previous Showing 11-12 of 12 results.