cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A341072 Number of compositions of 2n into n Fibonacci parts.

Original entry on oeis.org

1, 1, 3, 7, 23, 71, 231, 750, 2479, 8251, 27673, 93248, 315515, 1071097, 3646618, 12445982, 42571327, 145895599, 500855361, 1722062265, 5929045173, 20439121983, 70539320558, 243695962031, 842704577995, 2916613479471, 10102511916071, 35018749192885
Offset: 0

Views

Author

Alois P. Heinz, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) g(n):= (t-> issqr(t+4) or issqr(t-4))(5*n^2) end:
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(g(j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..35);
  • Mathematica
    g[n_] := g[n] = With[{t = 5*n^2}, IntegerQ@Sqrt[t+4] || IntegerQ@Sqrt[t-4]];
    b[n_, t_] := b[n, t] =
         If[n == 0, If[t == 0, 1, 0], If[t < 1, 0, Sum[
         If[g[j], b[n - j, t - 1], 0], {j, 1, n}]]];
    a[n_] := b[2n, n];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)

Formula

a(n) = A121548(2n,n).
a(n) ~ c * d^n / sqrt(n), where d = 3.532272846853808150678856189005437981671101510837727... and c = 0.2903295565097076269212760734928134309226027... - Vaclav Kotesovec, Feb 14 2021

A357717 Number of ways to write n as an ordered sum of nine positive Fibonacci numbers (with a single type of 1).

Original entry on oeis.org

1, 9, 45, 156, 423, 954, 1878, 3321, 5409, 8251, 11979, 16686, 22446, 29250, 37134, 46107, 56259, 67671, 80407, 94338, 109269, 125118, 141930, 159723, 178608, 198522, 219510, 241338, 264438, 288810, 314550, 341010, 367785, 394596, 421443, 448650, 476614, 505404, 534978
Offset: 9

Views

Author

Ilya Gutkovskiy, Oct 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 47; CoefficientList[Series[Sum[x^Fibonacci[k], {k, 2, 21}]^9, {x, 0, nmax}], x] // Drop[#, 9] &

Formula

G.f.: ( Sum_{k>=2} x^Fibonacci(k) )^9.
a(n) = A121548(n,9).

A121551 Number of parts in all the compositions of n into Fibonacci numbers (i.e., in all ordered sequences of Fibonacci numbers having sum n; only one 1 is considered as a Fibonacci number).

Original entry on oeis.org

1, 3, 8, 19, 44, 98, 213, 457, 965, 2018, 4183, 8604, 17594, 35780, 72428, 146024, 293335, 587386, 1172836, 2335761, 4640947, 9201531, 18208325, 35967145, 70929855, 139667107, 274630886, 539309530, 1057789244, 2072370716, 4055782140, 7929563974, 15488792843
Offset: 1

Views

Author

Emeric Deutsch, Aug 07 2006

Keywords

Comments

a(n) = Sum_{k=1..n} k*A121548(n,k).

Examples

			a(4)=19 because the compositions of 8 into Fibonacci numbers are [1,3],[2,2],[3,1],[1,1,2],[1,2,1],[2,1,1] and [1,1,1,1], having a total of 2+2+2+3+3+3+4 = 19 parts.
		

Crossrefs

Programs

  • Maple
    with(combinat): g:=sum(z^fibonacci(i),i=2..20)/(1-sum(z^fibonacci(i),i=2..20))^2: gser:=series(g,z=0,48): seq(coeff(gser,z,n),n=1..35);

Formula

G.f.: (Sum_{i>=2} z^Fibonacci(i))/(1 - Sum_{i>=2} z^Fibonacci(i))^2.

A357730 Number of ways to write n as an ordered sum of ten positive Fibonacci numbers (with a single type of 1).

Original entry on oeis.org

1, 10, 55, 210, 625, 1542, 3300, 6310, 11040, 17980, 27673, 40660, 57475, 78520, 104175, 134742, 170620, 212220, 260035, 314290, 374933, 441790, 514855, 594210, 680070, 772582, 871920, 977790, 1090680, 1210960, 1339417, 1475340, 1618020, 1766080, 1918785, 2076012
Offset: 10

Views

Author

Ilya Gutkovskiy, Oct 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[x^Fibonacci[k], {k, 2, 21}]^10, {x, 0, nmax}], x] // Drop[#, 10] &

Formula

G.f.: ( Sum_{k>=2} x^Fibonacci(k) )^10.
a(n) = A121548(n,10).
Previous Showing 11-14 of 14 results.