cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A279610 a(n) = concatenate n consecutive integers, starting with the last number of the previous batch.

Original entry on oeis.org

1, 12, 234, 4567, 7891011, 111213141516, 16171819202122, 2223242526272829, 293031323334353637, 37383940414243444546, 4647484950515253545556, 565758596061626364656667, 67686970717273747576777879, 7980818283848586878889909192
Offset: 1

Views

Author

José de Jesús Camacho Medina, Dec 09 2016, and Paolo Iachia, Dec 15 2016

Keywords

Comments

A variant of A053067. The first number of the concatenation a(n) is A152947(n) = (n-2)*(n-1)/2+1 and the last is (n-1)*n/2+1.
The fourth term, 4567, is a prime. When is the next prime, if there is another? - N. J. A. Sloane, Dec 16 2016
a(n) is the concatenation of the terms of the n-th row of A122797 when seen as a triangle. - Michel Marcus, Dec 17 2016

Examples

			a(4) is the concatenation of 4 numbers beginning with the last number (4) that was used to build a(3), so a(4) = 4 5 6 7 = 4567. Then a(5) is the concatenation of 5 numbers beginning with the last number of a(4), which is 7, so a(5) = 7 8 9 10 11 = 7891011. And so on.
For n = 3, n^2/2 - n/2 + 1 = 4; a(3) = 4 + 3*10^1 + 2*10^(1+1) = 234.
		

Crossrefs

A subsequence of A035333. For primes in latter, see A052087.

Programs

  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits /@ Range[(n(n - 1))/2 + 1, (n(n + 1))/2 + 1 ]]], {n, 0, 20}]
  • Python
    from _future_ import division
    def A279610(n):
        return int(''.join(str(d) for d in range((n-1)*(n-2)//2+1,n*(n-1)//2+2))) # Chai Wah Wu, Dec 17 2016

Formula

a(n) = n^2/2 - n/2 + 1 + Sum{k=1..n-1} ((n^2/2 - n/2 + 1 - k)*10^Sum{j=0..k-1} (floor(1+log_10(n^2/2 - n/2 + 1 - j)))).

A284652 Number T(n,k) of self-avoiding planar walks of length k starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal; triangle T(n,k), k>=0, floor((sqrt(1+8*k)-1)/2)<=n<=k, read by columns.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 4, 9, 1, 4, 8, 21, 7, 16, 22, 51, 3, 21, 54, 54, 127, 1, 17, 87, 178, 142, 323, 1, 15, 87, 269, 565, 370, 835, 10, 116, 370, 896, 1766, 983, 2188, 9, 99, 499, 1473, 2776, 5446, 2627, 5798, 4, 91, 536, 2290, 5528, 8657, 16655, 7086, 15511
Offset: 0

Views

Author

Alois P. Heinz, Mar 31 2017

Keywords

Examples

			Triangle T(n,k) begins:
1;
.  1, 1;
.  .  2, 1, 1,  1;
.  .  .  4, 4,  4,  7,   3,   1,   1;
.  .  .  .  9,  8, 16,  21,  17,  15,   10,    9, ... ;
.  .  .  .  .  21, 22,  54,  87,  87,  116,   99, ... ;
.  .  .  .  .   .  51,  54, 178, 269,  370,  499, ... ;
.  .  .  .  .   .   .  127, 142, 565,  896, 1473, ... ;
.  .  .  .  .   .   .    .  323, 370, 1766, 2776, ... ;
.  .  .  .  .   .   .    .    .  835,  983, 5446, ... ;
.  .  .  .  .   .   .    .    .     . 2188, 2627, ... ;
		

Crossrefs

Row sums give A284230.
Column sums give A284415.
Antidiagonal sums give A284428.
T(n,n) gives A001006.
T(n,n+1) gives A284778.
T(n,2n) gives A284416.
T(n,n*(n+1)/2) gives A284418.
Column heights give A122797(k+1).
Cf. A000096, A284231, A284461, A284414 (this triangle read by rows).

Formula

Sum_{k=n..n*(n+3)/2} (k+1) * T(n,k) = A284231(n).

A219356 Triangle read by rows: A219274 with rows reversed.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 4, 5, 1, 5, 9, 16, 1, 6, 14, 49, 1, 7, 20, 92, 70, 1, 8, 27, 153, 204, 168, 1, 9, 35, 235, 405, 738, 768, 1, 10, 44, 341, 715, 1815, 3300, 1, 11, 54, 474, 1166, 3630, 9460, 7887, 1, 12, 65, 637, 1794, 6578, 21307, 28743, 15015
Offset: 0

Views

Author

Alois P. Heinz, Nov 18 2012

Keywords

Comments

For more information see A219274.

Examples

			A219274 with rows reversed begins:
  1;
  1;
  1;
  1,  2;
  1,  3;
  1,  4,  5;
  1,  5,  9,  16;
  1,  6, 14,  49;
  1,  7, 20,  92,  70;
  1,  8, 27, 153, 204, 168;
  1,  9, 35, 235, 405, 738, 768;
  ...
		

Crossrefs

Row lengths are A122797 (for n>0).
Row sums give: A218293.
Last elements of rows give: A219339.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) local s; s:=i*(i+1)/2;
          `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
           g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
        end:
    T:= (n, k)-> `if`(k>n, 0, g(n-k, k-1, [k])):
    seq(seq(T(n, n-k), k=0..(n-floor(sqrt(2*n)+1/2))), n=0..14);
Previous Showing 11-13 of 13 results.