cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A102671 Number of digits >= 3 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007089 (numbers in base 3). - Bernard Schott, Nov 20 2022

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=3 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Table[Count[IntegerDigits[n],?(#>2&)],{n,0,110}] (* _Harvey P. Dale, Mar 07 2012 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor((n/10^j) + 7/10) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(3*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A102672 Number of digits >= 3 in the decimal representations of all integers from 0 to n.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 14, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 32, 34, 36, 38, 39, 40, 41, 43, 45, 47, 49, 51, 53, 55, 56, 57, 58, 60, 62, 64, 66, 68, 70, 72, 73, 74, 75, 77, 79, 81, 83, 85, 87, 89, 90, 91, 92, 94
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

The total number of digits >= 3 occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Partial sums of A102671.
Cf. A000120, A000788, A023416, A059015 (for base 2).

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=3 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(add(p(i),i=0..n), n=0..80); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Accumulate[Table[Count[IntegerDigits[n],?(#>2&)],{n,0,80}]] (* _Harvey P. Dale, Nov 23 2014 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 7/10)*(2n + 2 + (2/5 - floor(n/10^j + 7/10))*10^j) - floor(n/10^j)*(2n + 2 - (1 + floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A102671(n) + (1/2)*Sum_{j=1..m+1} (((2/5)*floor(n/10^j + 7/10) + floor(n/10^j))*10^j - (floor(n/10^j + 7/10)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m - 1) = 7*m*10^(m-1).
(This is the total number of digits >= 3 occurring in all the numbers with <= m places.)
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(3*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A102673 Number of digits >= 4 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007090 (numbers in base 4). - Bernard Schott, Feb 01 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=4 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..125); # Emeric Deutsch, Feb 22 2005
  • Mathematica
    Table[Total@ Take[DigitCount@ n, {4, 9}], {n, 0, 104}] (* Michael De Vlieger, Aug 17 2017 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 3/5) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(4*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 22 2005

A102674 Number of digits >= 4 in the decimal representations of all integers from 0 to n.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 7, 8, 9, 10, 11, 12, 12, 12, 12, 12, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 40, 41, 42, 43, 44, 46, 48, 50, 52, 54, 56, 57, 58, 59, 60, 62, 64, 66, 68, 70, 72, 73, 74, 75, 76, 78
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

The total number of digits >= 4 occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=4 then ct:=ct+1 else ct:=ct fi od: ct: end:seq(add(p(i),i=0..n),n=0..90); # Emeric Deutsch, Feb 22 2005
  • Mathematica
    Accumulate[Table[Total[Drop[Most[DigitCount[n]],3]],{n,0,80}]] (* Harvey P. Dale, Nov 27 2015 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 3/5)*(2n + 2 + (1/5 - floor(n/10^j + 3/5))*10^j) - floor(n/10^j)*(2n + 2 - (1 + floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A102673(n) + (1/2)*Sum_{j=1..m+1} (((1/5)*floor(n/10^j + 3/5) + floor(n/10^j))*10^j - (floor(n/10^j + 3/5)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m - 1) = 6*m*10^(m-1).
(This is the total number of digits >= 4 occurring in all the numbers with <= m places.)
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(4*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 22 2005

A102675 Number of digits >= 5 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007091 (numbers in base 5). - Bernard Schott, Feb 02 2023

References

  • Curtis Cooper, Number of large digits in the positive integers not exceeding n, Abstracts Amer. Math. Soc., 25 (No. 1, 2004), p. 38, Abstract 993-11-964.

Crossrefs

Cf. A000120, A000788, A023416, A059015 (for base 2).

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=5 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..120); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Table[Count[IntegerDigits[n],?(#>4&)],{n,0,120}] (* _Harvey P. Dale, Nov 13 2013 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/2) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(5*10^j) - x^(10*10^j))/(1 - x^10^(j+1)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} x^(5*10^j)/(1 + x^(5*10^j)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A102676 Number of digits >= 5 in the decimal representations of all integers from 0 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10, 11, 12, 13, 14, 15, 15, 15, 15, 15, 15, 16, 17, 18, 19, 20, 20, 20, 20, 20, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 41, 42, 43, 44, 45, 47, 49, 51, 53, 55, 56, 57, 58, 59, 60, 62
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

The total number of digits >= 5 occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

References

  • Curtis Cooper, Number of large digits in the positive integers not exceeding n, Abstracts Amer. Math. Soc., 25 (No. 1, 2004), p. 38, Abstract 993-11-964.

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=5 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(add(p(i),i=0..n), n=0..83); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Accumulate[Table[Total[Take[DigitCount[n],{5,9}]],{n,0,80}]] (* Harvey P. Dale, Apr 27 2015 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 1/2)*(2n + 2 - floor(n/10^j + 1/2)*10^j - floor(n/10^j)*(2n + 2 - (1+floor(n/10^j))*10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A102675(n) + (1/2)*Sum_{j=1..m+1} (floor(n/10^j)*10^j - (floor(n/10^j + 1/2)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m-1) = 5*m*10^(m-1).
(This is the total number of digits >= 5 occurring in all the numbers with <= m places.)
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(5*10^j) - x^(10*10^j))/(1-x^10^(j+1)).
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} x^(5*10^j)/(1+x^(5*10^j)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A102678 Number of digits >= 6 in the decimal representations of all integers from 0 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 12, 12, 12, 12, 12, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 20, 20, 20, 20, 20, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44, 46, 48
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

The total number of digits >= 6 occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Partial sums of A102677.
Cf. A000120, A000788, A023416, A059015 (for base 2).

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=6 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(add(p(i),i=0..n), n=0..86); # Emeric Deutsch, Feb 23 2005

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 2/5)*(2n + 2 - (1/5 + floor(n/10^j + 2/5))*10^j) - floor(n/10^j)*(2n + 2 - (1+floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A102677(n) + (1/2)*Sum_{j=1..m+1} ((-1/5*floor(n/10^j + 2/5) + floor(n/10^j))*10^j - (floor(n/10^j + 2/5)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m-1) = 4*m*10^(m-1).
(this is total number of digits >= 6 occurring in all the numbers with <= m places).
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(6*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005
An incorrect g.f. was deleted by N. J. A. Sloane, Sep 16 2009

A102680 Number of digits >= 7 in the decimal representations of all integers from 0 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 35, 36
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

The total number of digits >= 7 occurring in all the numbers 0, 1, 2, ..., n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Partial sums of A102679.
Cf. A000120, A000788, A023416, A059015 (for base 2).

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=7 then ct:=ct+1 else ct:=ct fi od: ct: end:
    seq(add(p(i),i=0..n), n=0..90);
    # Emeric Deutsch
  • Mathematica
    Accumulate[Table[Count[IntegerDigits[n],?(#>6&)],{n,0,90}]] (* _Harvey P. Dale, Sep 04 2018 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 7/10)*(2n + 2 - (2/5 + floor(n/10^j + 7/10))*10^j) - floor(n/10^j)*(2n + 2 - (1+floor(n/10^j)) * 10^j)), where m=floor(log_10(n)).
a(n) = (n+1)*A102679(n) + (1/2)*Sum_{j=1..m+1} (((-2/5)*floor(n/10^j + 7/10) + floor(n/10^j))*10^j - (floor(n/10^j + 7/10)^2 - floor(n/10^j)^2)*10^j), where m=floor(log_10(n)).
a(10^m-1) = 3*m*10^(m-1).
(this is total number of digits >= 7 occurring in all the numbers with <= m places).
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(7*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A102682 Number of digits >= 8 in the decimal representations of all integers from 0 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

The total number of digits >= 8 occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=8 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(add(p(i),i=0..n), n=0..95); # Emeric Deutsch, Feb 23 2005

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 1/5)*(2n + 2 - (3/5 + floor(n/10^j + 1/5))*10^j) - floor(n/10^j)*(2n + 2 - (1+floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A102681(n) + (1/2)*Sum_{j=1..m+1} ((-3/5*floor(n/10^j + 1/5) + floor(n/10^j))*10^j - (floor(n/10^j + 1/5)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m-1) = 2*m*10^(m-1). (this is total number of digits >= 8 occurring in all the numbers with <= m places).
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(8*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005
An incorrect g.f. was deleted by N. J. A. Sloane, Sep 16 2009

A369860 The orbit of n under iterations of x -> c(x)*10^L(x-c(x)) + x-c(x), where c(x) = floor(x^(1/3))^3, L(x) = floor(log_10(max(x,1))+1), enters a pseudo-loop x(k) = a^3 * 10^((k-k0)*L(b)) + b beyond some k0. This sequence lists the a-values.

Original entry on oeis.org

18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 883, 883, 883, 883, 883, 883, 883, 883, 883, 581, 581, 581, 581, 581, 581, 581, 581, 581, 581, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 8, 8, 8, 8
Offset: 1

Views

Author

M. F. Hasler, Apr 05 2024

Keywords

Comments

The iterated function can also be defined as x -> concatenate(c(x), x-c(x)), where c = A048762 gives the largest perfect cube <= x and x - c(x) = A055400(x) is the "cube excess" of x. L = A055642 gives the number of decimal digits.
The corresponding b-values are listed in A369861.

Examples

			Starting with 1, we get 1 -> 10 -> 82 (since 8 is the largest cube <= 10, at distance 2) -> 6418 (since the cube 64 is at distance 18) -> 5832586 (since 5832 = 18^3 is at distance 586) -> 5832000586 (since 180^3 is again at distance 586) -> ...: Each time 3 '0's will be inserted in front of the remainder which remains always the same, as does the cube root a(1) = 18, up to factors of 10.
Starting with 2, we get 2 -> 11 (since the largest cube <= 2 is 1, at distance 1) -> 83 (since largest cube <= 11 is 8, at distance 2) -> 6419 (since the cube 64 is at distance 19) -> 5832587 (since 5832 = 18^3 is at distance 587). We see that in this sequence each term is just one more than that of the preceding sequence, so the cube root remains the same, a(2) = a(1) = 18.
For n = 18, we get 18 -> 810 (since the largest cube <= 18 is 8, at distance 10) -> 72981 (since the cube 729 is at distance 81) -> 689214060 (since 68921 = 41^3 is at distance 4060) -> 688465387748673 (since 688465387 = 883^3 is at distance 748673), from where on the cube root a(18) = 883 gets an additional factor 10 at each step, but the cube excess A055400 remains the same, A369861(18) = 748673.
See A369861 for more examples.
		

Crossrefs

Cf. A000578 (cubes), A048766 (cube root), A048762 (largest cube <= n), A055400 (cube excess), A055642 (length of n in base 10), A122840 (10-valuation of n).
Cf. A369861 (b-values).

Programs

  • PARI
    A369860(n)={until(, my(c=sqrtnint(n, 3), v=valuation(c, 10), L=logint(max(n-c^3, 1), 10)+1); L==v*3 && return(c/10^v); n += c^3*(10^L-1))}
    
  • Python
    import sympy # for integer_nthroot (A048766), multiplicity (A122840)
    def A369860(n: int):
        while True:
            C = sympy.integer_nthroot(n, 3)[0]; L = A055642(n-C**3)
            if sympy.multiplicity(10, C)*3 == L: return C//10**(L//3)
            n += C**3 * (10**L - 1)
Previous Showing 31-40 of 48 results. Next