cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A091400 a(n) = Product_{ odd primes p | n } (1 + Legendre(-1,p) ).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 0
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2004

Keywords

Examples

			G.f. = x + x^2 + x^4 + 2*x^5 + x^8 + 2*x^10 + 2*x^13 + x^16 + 2*x^17 + 2*x^20 + ...
		

References

  • Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (2) (but without the restriction that a(4k) = 0).

Crossrefs

Programs

  • Maple
    with(numtheory): A091400 := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := 1; for i from 1 to nops(t1) do if t1[i][1] > 2 then t2 := t2*(1+legendre(-1,t1[i][1])); fi; od: t2; end;
    with(numtheory): seq(mul(1+legendre(-1,p),p in select(isprime, divisors(n) minus {2})),n=1..105); # Peter Luschny, Apr 20 2016
  • Mathematica
    Legendre[-1, p_] := Which[p==2, 0, Mod[p, 4]==1, 1, True, -1]; a[1] = 1; a[n_] := Times @@ (Legendre[-1, #] + 1&) /@ FactorInteger[n][[All, 1]]; Array[a, 105] (* Jean-François Alcover, Dec 01 2015 *)
    Join[{1},Table[Product[1+JacobiSymbol[-1,p],{p,Complement[FactorInteger[n][[All, 1]], {2}]}], {n,2,105}]] (* Peter Luschny, Apr 20 2016 *)
  • PARI
    {a(n)=if(n<1,0,sumdiv(n,d,(-1)^bigomega(d)*moebius(d)*if(d%2,(-1)^(d\2),0)))} \\ Benoit Cloitre, Apr 17 2016

Formula

Here we use the definition that Legendre(-1, 2) = 0, Legendre(-1, p) = 1 if p == 1 mod 4, = -1 if p == 3 mod 4. This is Shimura's definition, which is different from Maple's.
a(n) is multiplicative with:
a(2^e) = 1 for e >= 0,
a(p^e) = 0 if p == 3 (mod 4) for e > 0,
a(p^e) = 2 if p == 1 (mod 4) for e > 0.
(corrected by Werner Schulte, Dec 12 2020).
a(2*n) = a(n). a(3*n) = a(4*n + 3) = 0.
a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n).
a(n) = Sum_{d|n} b(d)*(-1)^bigomega(d)*moebius(d) where b(2n)=0 and b(2n+1)=(-1)^n. - Benoit Cloitre, Apr 17 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2/Pi = 0.636619... (A060294). - Amiram Eldar, Oct 11 2022

Extensions

Definition clarified by Peter Luschny, Apr 20 2016

A256280 Expansion of phi(q^3)^4 / (phi(q) * phi(q^9)) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 4, 0, -2, 8, 0, 0, 4, 4, -4, 0, 0, -4, 0, 0, -2, 8, 4, 0, 8, 0, 0, 0, 0, -6, 8, 0, 0, 8, 0, 0, 4, 0, -4, 0, 4, -4, 0, 0, -4, 8, 0, 0, 0, 8, 0, 0, 0, -2, 12, 0, -4, 8, 0, 0, 0, 0, -4, 0, 0, -4, 0, 0, -2, 16, 0, 0, 8, 0, 0, 0, 4, -4, 8, 0, 0, 0, 0, 0, 8
Offset: 0

Views

Author

Michael Somos, Jun 02 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q + 4*q^2 - 2*q^4 + 8*q^5 + 4*q^8 + 4*q^9 - 4*q^10 - 4*q^13 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(36), 1), 91); A[1] - 2*A[2] + 4*A[3] - 2*A[5] + 8*A[6] + 4*A[9] + 4*A[10] - 4*A[11] - 4*A[14] - 2*A[17] + 8*A[18] + 4*A[19];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3]^4 / (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^9]), {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, (-2)^(n%3) * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^10 * eta(x^9 + A) * eta(x^36 + A))^2 / (eta(x^2 + A)^5 * eta(x^3 + A)^8 * eta(x^12 + A)^8 * eta(x^18 + A)^5), n))};
    

Formula

Expansion of (eta(q) * eta(q^4) * eta(q^6)^10 * eta(q^9) * eta(q^36))^2 / (eta(q^2)^5 * eta(q^3)^8 * eta(q^12)^8 * eta(q^18)^5) in powers of q.
Euler transform of period 36 sequence [ -2, 3, 6, 1, -2, -9, -2, 1, 4, 3, -2, -3, -2, 3, 6, 1, -2, -6, -2, 1, 6, 3, -2, -3, -2, 3, 4, 1, -2, -9, -2, 1, 6, 3, -2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6 (t/i) f(t) where q = exp(2 Pi i t).
a(3*n + 1) = -2 * A122865(n). a(3*n + 2) = 4 * A122856(n). a(4*n + 3) = 0. a(4*n) = a(n). a(9*n) = A004018(n). a(9*n + 3) = a(9*n + 6) = 0. a(12*n + 1) = -2 * A002175(n). a(12*n + 5) = 8 * A121444(n).

A258034 Expansion of phi(q) * phi(q^9) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 4, 4, 0, 0, 4, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 4, 0, 0, 4, 0, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 8, 0
Offset: 0

Views

Author

Michael Somos, Jun 03 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^4 + 4*q^9 + 4*q^10 + 4*q^13 + 2*q^16 + 4*q^18 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(36), 1), 87); A[1] + 2*A[2] + 2*A[5] + 4*A[10] + 4*A[11] + 4*A[14] + 2*A[17] + 4*A[19];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^9], {q, 0, n}];
    a[ n_] := Which[ n < 1, Boole[n == 0], Mod[n, 3] == 2, 0, True, 2 DivisorSum[ n, If[ Mod[n/#, 9] > 0, 1, 2] KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Jul 04 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, (n+1)%3 * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^18 + A)^5 / (eta(x + A) * eta(x^4 + A) * eta(x^9 + A) * eta(x^36 + A))^2, n))};
    
  • PARI
    {a(n) = if( n<1, n==0, n%3==2, 0, 2 * sumdiv(n, d, if(n\d%9, 1, 2) * kronecker( -4, d)))}; /* Michael Somos, Jul 04 2015 */
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); (n%3 < 2) * 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 1 + (-1)^e, p%12>6, (1 + (-1)^e) / 2, e+1)))}; /* Michael Somos, Jul 04 2015 */
    

Formula

Expansion of eta(q^2)^5 * eta(q^18)^5 / (eta(q) * eta(q^4) * eta(q^9) * eta(q^36))^2 in powers of q.
Euler transform of period 36 sequence [2, -3, 2, -1, 2, -3, 2, -1, 4, -3, 2, -1, 2, -3, 2, -1, 2, -6, 2, -1, 2, -3, 2, -1, 2, -3, 4, -1, 2, -3, 2, -1, 2, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6 (t/i) f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A258322(n). a(4*n) = a(n).
a(3*n + 2) = a(4*n + 3) = a(8*n + 6) = a(9*n + 3) = a(9*n + 6) = 0.
a(3*n + 1) = 2 * A122865(n). a(6*n + 4) = 2 * A122856(n). a(9*n) = A004018(n). a(12*n + 1) = 2 * A002175(n).
a(2*n) = A028601(n). - Michael Somos, Jul 04 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/3 (A019670). - Amiram Eldar, Jan 29 2024

A258279 Expansion of psi(q)^2 * chi(-q^3)^2 in powers of q where psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 1, 0, -2, -2, 0, 0, 1, -4, -4, 0, 0, 4, 0, 0, -2, -2, 4, 0, 2, 0, 0, 0, 0, 6, 2, 0, 0, -2, 0, 0, 1, 0, -4, 0, 4, 4, 0, 0, -4, -2, 0, 0, 0, -8, 0, 0, 0, 2, 3, 0, -4, -2, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, -2, -4, 0, 0, 2, 0, 0, 0, 4, 4, 2, 0, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, May 25 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + q^2 - 2*q^4 - 2*q^5 + q^8 - 4*q^9 - 4*q^10 + 4*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, Pi/6, q]^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)))^2, n))};

Formula

Expansion of eta(q^2)^4 * eta(q^3)^2 / (eta(q)^2 * eta(q^6)^2) in powers of q.
Euler transform of period 6 sequence [ 2, -2, 0, -2, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 36 (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A002175.
G.f.: Product_{k>0} (1 - x^(2*k))^2 / (1 - x^k + x^(2*k))^2.
Convolution square of A089810.
a(2*n) = A258228(n). a(3*n + 1) = 2 * A258277(n). a(3*n + 2) = A258278(n). a(4*n + 3) = 0. a(6*n + 2) = A122865(n). a(6*n + 4) = -2 * A122856(n). a(12*n + 1) = 2 * A002175(n). a(12*n + 5) = -2 * A121444(n).
a(18*n) = A004018(n). a(18*n + 3) = a(18*n + 6) = a(18*n + 12) = 0.

A256276 Expansion of q * phi(q) * chi(q^3) * psi(-q^9) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 1, 4, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 1, 4, 0, 0, 4, 0, 0, 0, 0, 3, 4, 0, 0, 4, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 1, 6, 0, 2, 4, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 8, 0, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 4, 0, 0
Offset: 1

Views

Author

Michael Somos, Jun 02 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 2*q^2 + q^4 + 4*q^5 + 2*q^8 + 2*q^10 + 2*q^13 + q^16 + 4*q^17 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(36), 1), 89); A[2] + 2*A[3]
    + A[5] + 4*A[6] + 2*A[9] + 2*A[11] + 2*A[14] + A[17] + 4*A[18];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, q^(9/2)] / (2^(1/2) q^(1/8)) QPochhammer[ -q^3, q^6] EllipticTheta[ 3, 0, q], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^6 + A)^2 * eta(x^9 + A) * eta(x^36 + A) / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^3 + A) * eta(x^12 + A) * eta(x^18 + A)), n))};
    

Formula

Expansion of eta(q^2)^5 * eta(q^6)^2 * eta(q^9) * eta(q^36) / (eta(q)^2 * eta(q^4)^2 * eta(q^3) * eta(q^12) * eta(q^18)) in powers of q.
Euler transform of period 36 sequence [ 2, -3, 3, -1, 2, -4, 2, -1, 2, -3, 2, -1, 2, -3, 3, -1, 2, -4, 2, -1, 3, -3, 2, -1, 2, -3, 2, -1, 2, -4, 2, -1, 3, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A256269.
a(3*n) = a(4*n + 3) = 0. a(3*n + 1) = A122865(n). a(3*n + 2) = 2 * A122856(n). a(4*n + 1) = a(n). a(4*n) = a(n). a(6*n + 2) = 2 * A122865(n). a(6*n + 4) = A122856(n).

A259761 Expansion of (phi(x)^2 + phi(x^9)^2) / 2 in powers of x where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 2, 0, 2, 4, 0, 0, 2, 4, 4, 0, 0, 4, 0, 0, 2, 4, 4, 0, 4, 0, 0, 0, 0, 6, 4, 0, 0, 4, 0, 0, 2, 0, 4, 0, 4, 4, 0, 0, 4, 4, 0, 0, 0, 8, 0, 0, 0, 2, 6, 0, 4, 4, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 2, 8, 0, 0, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 8, 0
Offset: 0

Views

Author

Michael Somos, Jul 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 2*x^2 + 2*x^4 + 4*x^5 + 2*x^8 + 4*x^9 + 4*x^10 + 4*x^13 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(36), 1), 87); A[1] + 2*A[2] + 2*A[3] + 2*A[5] + 4*A[6] + 2*A[9] + 4*A[10] + 4*A[11] + 4*A[14] + 2*A[17] + 4*A[18] + 4*A[19];
  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x]^2 + EllipticTheta[ 3, 0, x^9]^2) / 2, {x, 0, n}];
    a[ n_] := If[ n < 1, Boole[n == 0], 2 Times @@ ( Which[ # < 3, 1, # == 3, 1 + (-1)^#2, Mod[#, 12] < 6, #2 + 1, True, (1 + (-1)^#2) / 2 ] & @@@ FactorInteger[n])];
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 1 + (-1)^e, p%12>6, (1 + (-1)^e) / 2, e+1)))};
    

Formula

phi(x) = 1 + 2*Sum_{m=1..oo} x^(m^2). - N. J. A. Sloane, Jan 30 2017
Expansion of phi(x) * phi(x^9) + 2 * x^2 * chi(x^3)^2 * psi(-x^9)^2 in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
a(n) = 2 * b(n) with a(0) = 1 and b() is multiplicative with b(2^e) = 1, b(3^e) = 1 + (-1)^e if e>0, b(p^e) = e+1 if p == 1, 5 (mod 12), (p^e) = (1 + (-1)^e)/2 if p == 7, 11 (mod 12).
a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0.
a(2*n) = a(n). a(9*n) = A004018(n). a(6*n + 4) = 2 * A122856(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5*Pi/9 = 1.745329... (= 100 * A019685). - Amiram Eldar, Dec 29 2023

A132004 Expansion of (1 - phi(q^3) / phi(q) * phi(-q^2) * phi(-q^6)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 1, -1, 2, -1, 0, -1, 1, -2, 0, -1, 2, 0, 2, -1, 2, -1, 0, -2, 0, 0, 0, -1, 3, -2, 1, 0, 2, -2, 0, -1, 0, -2, 0, -1, 2, 0, 2, -2, 2, 0, 0, 0, 2, 0, 0, -1, 1, -3, 2, -2, 2, -1, 0, 0, 0, -2, 0, -2, 2, 0, 0, -1, 4, 0, 0, -2, 0, 0, 0, -1, 2, -2, 3, 0, 0, -2
Offset: 1

Views

Author

Michael Somos, Aug 06 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x - x^2 + x^3 - x^4 + 2*x^5 - x^6 - x^8 + x^9 - 2*x^10 - x^12 + 2*x^13 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Equation (32.72).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, (-1)^(n + #) KroneckerSymbol[ -36, #] &]]; (* Michael Somos, Nov 01 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 5, -(-1)^#, Mod[#, 4] == 3, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger @ n)]; (* Michael Somos, Nov 01 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(n+d) * kronecker( -36, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)^7 / (eta(x^2 + A)^3 * eta(x^3 + A)^2 * eta(x^12 + A)^3)) / 2, n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p==2, -1, p%4==1, e+1, 1-e%2)))};

Formula

Expansion of (1 - eta(q)^2 * eta(q^4) * eta(q^6)^7 / (eta(q^2)^3 * eta(q^3)^2 * eta(q^12)^3)) / 2 in powers of q.
a(n) is multiplicative with a(2^e) = 2*0^e - 1, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4).
G.f.: Sum_{k>0} x^k / (1 + x^k) * Kronecker(-36, k).
a(3*n) = a(n). -2 * a(n) = A132003(n) unless n = 0. a(2*n) = - A035154(n). a(2*n + 1) = A125079(n).
a(n) = (-1)^n * A035154(n). a(12*n + 7) = a(12*n + 11) = 0. - Michael Somos, Nov 01 2015
a(3*n + 1) = A258277(n). a(3*n + 2) = - A258278(n). a(4*n + 1) = A008441(n). a(4*n + 2) = - A125079(n). - Michael Somos, Nov 01 2015
a(6*n) = - A035154(n). a(6*n + 2) = - A122865(n). a(6*n + 4) = - A122856(n). - Michael Somos, Nov 01 2015
a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). - Michael Somos, Nov 01 2015

A281452 Expansion of f(x, x) * f(x^5, x^13) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 1, 2, 0, 0, 4, 0, 0, 0, 1, 4, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 4, 2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 2, 0, 0, 3, 2, 0, 0, 2, 4, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 4, 0, 0, 0, 0, 5, 2, 0, 0, 2, 0, 0, 0, 4, 2, 0, 2, 2, 0, 0, 0, 2, 2
Offset: 0

Views

Author

Michael Somos, Jan 26 2017

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^4 + x^5 + 2*x^6 + 4*x^9 + x^13 + 4*x^14 + 2*x^16 + ...
G.f. = q^4 + 2*q^13 + 2*q^40 + q^49 + 2*q^58 + 4*q^85 + q^121 + 4*q^130 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 4, KroneckerSymbol[ -4, #] &]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^5, x^18] QPochhammer[ -x^13, x^18] QPochhammer[ x^18], {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 3, 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 4])];
  • PARI
    {a(n) = if( n<0, 0, sumdiv(9*n + 4, d, (d%4==1) - (d%4==3)))};
    
  • PARI
    {a(n) = if( n<0, 0, my(m = 9*n + 4, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 2 || k%9 == 7), s+=(j>0)+1)); s)};
    
  • PARI
    {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 4); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p%4==1, e+1, 1-e%2)))};

Formula

f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of a period 36 sequence.
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 4*k)).
G.f.: Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 - x^(18*k-13)) * (1 - x^(18*k-5)) * (1 - x^(18*k)).
a(n) = A122865(3*n + 1) = A122856(6*n + 2) = A258278(6*n + 2). a(n) = - A256269(9^n + 4). 4 * a(n) = A004018(9*n + 4).
2 * a(n) = b(9*n + 4) = with b = A105673, A105673, A122857, A258034, A259761. -2 * a(n) = b(9*n + 4) with b = A138949, A256280, A258292.
a(4*n) = A281453(n). a(8*n + 6) = 2 * A281490(n). a(16*n + 12) = A281451(n).
a(32*n + 4) = 2 * A281492(n). a(64*n + 28) = A281452(n). a(128*n + 60) = 2 * A281491(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/3 = 1.0471975... (A019670). - Amiram Eldar, Jan 20 2025

A281453 Expansion of f(x, x) * f(x^7, x^11) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 1, 2, 2, 0, 3, 2, 0, 0, 2, 4, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 6, 0, 0, 0, 1, 4, 0, 2, 2, 0, 0, 2, 2, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 3, 4, 0, 0, 2, 0, 4, 0, 0, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 26 2017

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^4 + x^7 + 2*x^8 + 2*x^9 + 3*x^11 + 2*x^12 + ...
G.f. = q + 2*q^10 + 2*q^37 + q^64 + 2*q^73 + 2*q^82 + 3*q^100 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 1, KroneckerSymbol[ -4, #] &]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^7, x^18] QPochhammer[ -x^11, x^18] QPochhammer[ x^18], {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[# < 3, 1, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 1])];
  • PARI
    {a(n) = if( n<0, 0, sumdiv(9*n + 1, d, kronecker(-4, d)))};
    
  • PARI
    {a(n) = if( n<0, 0, my(m = 9*n + 1, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 1 || k%9 == 8), s+=(j>0)+1)); s)};
    
  • PARI
    {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, -2*(-1)^e, p%4==1, e+1, 1-e%2)))};

Formula

f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of a period 36 sequence.
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 2*k)).
G.f.: Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 + x^(18*k-11)) * (1 + x^(18*k-7)) * (1 - x^(18*k)).
a(4*n + 2) = a(8*n + 5) = a(16*n + 3) = a(32*n + 31) = a(64*n + 55) = a(128*n + 39) = 0.
a(4*n + 3) = A281451(n). a(8*n + 1) = 2 * A281492(n). a(16*n + 7) = A281452(n). a(32*n + 15) = 2 * A281491(n). a(128*n + 103) = 2 * A281490(n).
a(n) = A122865(3*n) = A122856(6*n) = A258278(6*n) = a(64*n + 7). a(n) = -A256269(9*n + 1).
2 * a(n) = b(9*n + 1) where b = A105673, A122857, A258034, A259761. 2 * a(n) = - b(9*n+1) where b = A138949, A256280, A258292. 4 * a(n) = A004018(9*n + 1).
Convolution of A000122 and A205808.

A256014 Expansion of phi(-q^3)^4 / (phi(-q) * phi(-q^9)) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 4, 0, -2, -8, 0, 0, 4, -4, -4, 0, 0, 4, 0, 0, -2, -8, 4, 0, 8, 0, 0, 0, 0, 6, 8, 0, 0, -8, 0, 0, 4, 0, -4, 0, 4, 4, 0, 0, -4, -8, 0, 0, 0, -8, 0, 0, 0, 2, 12, 0, -4, -8, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, -2, -16, 0, 0, 8, 0, 0, 0, 4, 4, 8, 0, 0, 0, 0, 0, 8
Offset: 0

Views

Author

Michael Somos, Jun 03 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 4*q^2 - 2*q^4 - 8*q^5 + 4*q^8 - 4*q^9 - 4*q^10 + 4*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^3]^4 / (EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^9]), {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^8 * eta(x^18 + A) / (eta(x + A)^2 * eta(x^6 + A)^4 * eta(x^9 + A)^2), n))};
    
  • PARI
    {a(n) = if( n<1, n==0, 2^(n%3) * (-1)^(n\3) * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))};

Formula

Expansion of eta(q^2) * eta(q^3)^8 * eta(q^18) / (eta(q)^2 * eta(q^6)^4 * eta(q^9)^2) in powers of q.
Euler transform of period 18 sequence [ 2, 1, -6, 1, 2, -3, 2, 1, -4, 1, 2, -3, 2, 1, -6, 1, 2, -2, ...].
a(n) = (-1)^n * A256280(n). a(3*n + 1) = 2 * A258277(n). a(3*n + 2) = 4 * A258278(n). a(4*n) = A256280(n). a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0.
a(6*n + 2) = 4 * A122865(n). a(6*n + 4) = -2 * A122856(n). a(9*n) = A104794(n). a(12*n + 1) = A002175(n). a(12*n + 5) = -8 * A121444(n).
Previous Showing 21-30 of 32 results. Next