cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A126640 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digit 1 and 2, at least one of digits 3,4, at least one of digits 5,6 and at least one of digits 7,8,9.

Original entry on oeis.org

8, 60, 422, 2784, 17318, 102600, 584942, 3237504, 17516438, 93136440, 488625662, 2537103024, 13068059558, 66890498280, 340713533582, 1728792901344, 8745409322678, 44134458900120, 222306845468702, 1118087142184464, 5616691514201798, 28188613237893960
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->12*5^n-24*4^n+19*3^n-7*2^n+1;
  • Mathematica
    LinearRecurrence[{15,-85,225,-274,120},{8, 60, 422, 2784, 17318},22] (* James C. McMahon, Dec 26 2024 *)
  • PARI
    Vec(-2*x*(60*x^4-123*x^3+101*x^2-30*x+4) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 12*5^n-24*4^n+19*3^n-7*2^n+1.
G.f.: -2*x*(60*x^4-123*x^3+101*x^2-30*x+4) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Feb 22 2015

A126641 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digit 1, at least one of digits 2,3, at least one of digits 4,5, at least one of digits 6,7 and at least one of digits 8,9.

Original entry on oeis.org

9, 73, 537, 3625, 22809, 135913, 777177, 4308265, 23329689, 124104553, 651267417, 3382100905, 17421964569, 89180975593, 454265623257, 2304999893545, 11660373751449, 58845428989033, 296407578308697, 1490778208598185, 7488908074594329, 37584775814704873
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->16*5^n-32*4^n+24*3^n-8*2^n+1;
  • PARI
    Vec(-x*(120*x^4-250*x^3+207*x^2-62*x+9) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 16*5^n-32*4^n+24*3^n-8*2^n+1.
G.f.: -x*(120*x^4-250*x^3+207*x^2-62*x+9) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Feb 22 2015

A126642 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3,4 and 5 and at least one of digits 6,7,8,9.

Original entry on oeis.org

5, 25, 125, 601, 2765, 12265, 52925, 223801, 932525, 3844105, 15722525, 63936601, 258902285, 1045109545, 4209004925, 16921851001, 67945160045, 272554432585, 1092540156125, 4377129999001, 17529432313805, 70180474597225, 280910151192125
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->4*4^n-6*3^n+4*2^n-1;
  • PARI
    Vec(-x*(24*x^3-50*x^2+25*x-5) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 4*4^n-6*3^n+4*2^n-1.
a(n) = 10*a(n-1)-35*a(n-2)+50*a(n-3)-24*a(n-4). - Colin Barker, Feb 22 2015
G.f.: -x*(24*x^3-50*x^2+25*x-5) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Feb 22 2015

A126643 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3,4, at least one of digits 5,6 and at least one of digits 7,8,9.

Original entry on oeis.org

6, 34, 180, 886, 4116, 18334, 79260, 335446, 1398276, 5765134, 23581740, 95900806, 388345236, 1567647934, 6313474620, 25382710966, 101917608996, 408831386734, 1638809709900, 6565693949926, 26294146373556, 105270707701534, 421365218399580
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->6*4^n-9*3^n+5*2^n-1;
  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{6,34,180,886},30] (* Harvey P. Dale, Sep 12 2023 *)
  • PARI
    Vec(-2*x*(12*x^3-25*x^2+13*x-3) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 6*4^n-9*3^n+5*2^n-1.
a(n) = 10*a(n-1)-35*a(n-2)+50*a(n-3)-24*a(n-4). - Colin Barker, Feb 22 2015
G.f.: -2*x*(12*x^3-25*x^2+13*x-3) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Feb 22 2015

A126629 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks digits 1 and 2, at least one of digits 3,4,5 and at least one of digits 6,7,8,9.

Original entry on oeis.org

8, 64, 506, 3916, 29498, 215524, 1527506, 10528876, 70841738, 467044084, 3027621506, 19356463036, 122355512378, 766290978244, 4762898595506, 29420807536396, 180813134269418, 1106606890266004, 6749433735297506, 41050188511748956, 249087606867080858
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->12*6^n-30*5^n+34*4^n-21*3^n+7*2^n-1;
  • Mathematica
    LinearRecurrence[{21,-175,735,-1624,1764,-720},{8,64,506,3916,29498,215524},30] (* Harvey P. Dale, Sep 26 2019 *)
  • PARI
    vector(100, n, 12*6^n-30*5^n+34*4^n-21*3^n+7*2^n-1) \\ Colin Barker, Feb 23 2015

Formula

a(n) = 12*6^n-30*5^n+34*4^n-21*3^n+7*2^n-1.
G.f.: -2*x*(360*x^5 -882*x^4 +695*x^3 -281*x^2 +52*x -4) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)). - Colin Barker, Feb 23 2015

A126718 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3, at least one of digits 4,5, at least one of digits 6,7 and at least one of digits 8,9.

Original entry on oeis.org

7, 43, 235, 1171, 5467, 24403, 105595, 447091, 1864027, 7686163, 31440955, 127865011, 517788187, 2090186323, 8417944315, 33843570931, 135890057947, 545108340883, 2185079263675, 8754257900851, 35058860433307, 140360940805843, 561820285607035
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 13 2007

Keywords

Crossrefs

Programs

  • Magma
    [8*4^n-12*3^n+6*2^n-1: n in [1..30]]; // Vincenzo Librandi, May 31 2011
    
  • Maple
    a:=n->8*4^n-12*3^n+6*2^n-1;
  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{7, 43, 235, 1171},23] (* James C. McMahon, Dec 27 2024 *)
  • PARI
    Vec(-x*(24*x^3-50*x^2+27*x-7) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 8*4^n - 12*3^n + 6*2^n - 1.
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4). - Colin Barker, Feb 22 2015
G.f.: -x*(24*x^3 - 50*x^2 + 27*x - 7) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Feb 22 2015

A258800 The number of zeroless decimal numbers whose digital sum is n.

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, 16272, 32512, 64960, 129792, 259328, 518145, 1035269, 2068498, 4132920, 8257696, 16499120, 32965728, 65866496, 131603200, 262947072, 525375999, 1049716729, 2097364960, 4190597000, 8372936304, 16729373488, 33425781248
Offset: 0

Views

Author

Robert G. Wilson v, Jun 10 2015

Keywords

Comments

If you were to include decimal numbers that contain any number of zeros, then a(n) would be infinity. If on the other hand, you limit the number of zeros to some number, then a(n) is finite.

Examples

			a(0) = 0 since there exists no decimal number lacking a zero whose digital sum is zero.
a(1) = 1 since there exists only one zeroless decimal number whose digital sum is one and that number is 1.
a(2) = 2 since there exist only two zeroless decimal numbers whose digital sum is two and they are 2 & 11.
a(3) = 4 since there exist only four zeroless decimal numbers whose digital sum is three and they are 3, 21, 12 & 111.
a(4) = 8 since there exist only eight zeroless decimal numbers whose digital sum is four and they are 4, 31, 13, 22, 211, 121, 112 & 1111.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[-1 + 1/(1 - x (1 + x + x^2) (1 + x^3 + x^6)), {x, 0, 36}], x]

Formula

a(n) = A104144(n+8) for n>0.
G.f.: -(x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9)/(-1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9) = -1 + 1/(1-x(1 + x + x^2)(1 + x^3 + x^6)).
Previous Showing 11-17 of 17 results.